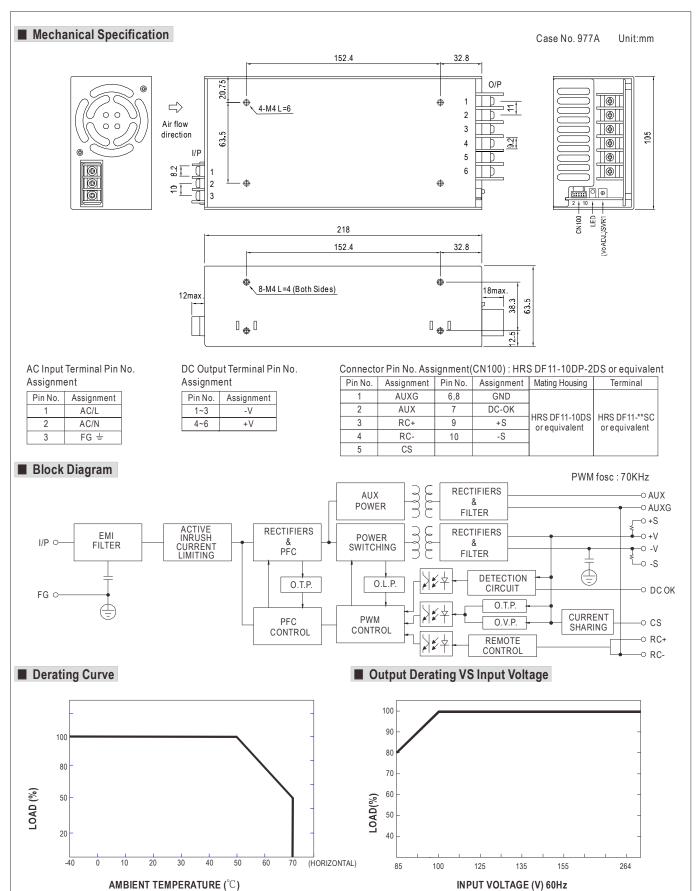


■ Features :


- Universal AC input / Full range
- Built-in active PFC function, PF>0.94
- High efficiency up to 89%
- Withstand 300VAC surge input for 5 seconds
- Protections: Short circuit / Overload / Over voltage / Over temperature
- Medical safety approved (MOOP level)
- · Built-in cooling fan ON-OFF control
- · Built-in DC OK signal
- Built-in remote ON-OFF control
- Standby 5V@0.3A
- · Built-in remote sense function
- No load power consumption<0.8W (Note.7)
- Current sharing up to 2400W (3+1) (24V,36V,48V)
- 5 years warranty

SPECIFICATION MODEL MSP-600-3.3 MSP-600-5 MSP-600-7.5 MSP-600-12 MSP-600-15 MSP-600-24 MSP-600-36 MSP-600-48 DC VOLTAGE 3.3V 5V 7.5V 12V 15V 24V 36V 48V 120A 80A 53A RATED CURRENT 120A 43A 27A 17.5A 0~120A 0 ~ 120A 0~80A 0 ~ 53A 0~43A 0 ~ 27A 0~17.5A 0 ~ 13A **CURRENT RANGE** RATED POWER 396W 600W 600W 636W 645W 648W 630W 624W RIPPLE & NOISE (max.) Note.2 100mVp-p 100mVp-p 100mVp-p 120mVp-p 150mVp-p 150mVp-p 200mVp-p 240mVp-p OUTPUT **VOLTAGE ADJ. RANGE** 2.8 ~ 3.8V 4.3 ~ 5.8V 6.8 ~ 9V 10.2 ~ 13.8V 13.5 ~ 18V 21.6 ~ 28.8V 28.8 ~ 39.6V 40.8 ~ 55.2V **VOLTAGE TOLERANCE Note.3** ±2.0% $\pm 2.0\%$ ±2.0% ±1.0% ±1.0% ±1.0% ±1.0% ±1.0% LINE REGULATION +0.5% +0.5% +0.5% ±0.3% ±0.3% ±0.2% ±0.2% ±0.2% ±1.0% ±1.0% ±1.0% ±0.5% $\pm 0.5\%$ ±0.5% $\pm 0.5\%$ $\pm 0.5\%$ LOAD REGULATION 1000ms, 50ms/230VAC 2500ms, 50ms/115VAC at full load SETUP. RISE TIME HOLD UP TIME (Typ.) 16ms/230VAC 16ms/115VAC at full load Note.5 | 85 ~ 264 VAC 120 ~ 370VDC **VOLTAGE RANGE** 47 ~ 63Hz FREQUENCY RANGE PF>0.94/230VAC PF>0.99/115VAC at full load POWER FACTOR (Typ.) INPUT EFFICIENCY (Typ.) 88% 88% 78.5% 82% 86% 89% 89% AC CURRENT (Typ.) 8 5A/115VAC 5A/230VAC INRUSH CURRENT (Typ.) 80A/230VAC 35A/115VAC LEAKAGE CURRENT Earth leakage current < 300μ A/264VAC , Touch leakage current < 100μ A/264VAC 105 ~ 135% rated output power **OVERLOAD** Protection type: Constant current limiting, recovers automatically after fault condition is removed 9.4 ~ 10.9V 57.6 ~ 67.2V **PROTECTION** 3.96 ~ 4.62V | 6 ~ 7V 14.4 ~ 16.8V | 18.8 ~ 21.8V 41 4 ~ 48 6V OVER VOLTAGE Protection type: Shut down o/p voltage, re-power on to recover **OVER TEMPERATURE** Shut down o/p voltage, recovers automatically after temperature goes down **5V STANDBY** 5VSB: 5V@0.3A; tolerance ±5%, ripple: 50mVp-p(max.) DC OK SIGNAL PSU turn on : $3.3 \sim 5.6 \text{V}$; PSU turn off : $0 \sim 1 \text{V}$ **FUNCTION** RC+ / RC-: $4 \sim 10V$ or open = power on; $0 \sim 0.8V$ or short = power off REMOTE CONTROL Load 35±15% or RTH2≥50°C Fan on FAN CONTROL (Typ.) -40 ~ +70°C (Refer to "Derating Curve") WORKING TEMP 20 ~ 90% RH non-condensing WORKING HUMIDITY **ENVIRONMENT** STORAGE TEMP., HUMIDITY -40 ~ +85°C, 10 ~ 95% RH TEMP. COEFFICIENT ±0.03%/°C (0 ~ 50°C) VIBRATION 10 ~ 500Hz, 5G 10min./1cycle, 60min. each along X, Y, Z axes SAFETY STANDARDS ANSI/AAMI ES60601-1, IEC60601-1 approved WITHSTAND VOLTAGE I/P-O/P:4KVAC I/P-FG:2KVAC O/P-FG:0.5KVAC **SAFETY &** ISOLATION RESISTANCE I/P-O/P, I/P-FG, O/P-FG:100M Ohms / 500VDC / 25°C / 70% RH **EMC** (Note 4) **EMC EMISSION** Compliance to EN55011 (CISPR11) Class B, EN61000-3-2,-3 **EMC IMMUNITY** Compliance to EN61000-4-2,3,4,5,6,8,11, EN60601-1-2 **MTBF** 138.7K hrs min. MIL-HDBK-217F (25°C) **OTHERS DIMENSION** 218*105*63.5mm (L*W*H) **PACKING** 1.57Kg;8pcs/13.6Kg/1.34CUFT 1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25°C of ambient temperature. 2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor. NOTE 3. Tolerance: includes set up tolerance, line regulation and load regulation. 4. The power supply is considered a component which will be installed into a final equipment. The final equipment must be re-confirmed that it still meets

- 4. The power supply is considered a component which will be installed into a final equipment. The final equipment must be re-confirmed that it still meets EMC directives. For guidance on how to perform these EMC tests, please refer to EMI testing of component power supplies. (as available on http://www.meanwell.com)
- b. Derating may be needed under low input voltages. Please check the derating curve for more details.
- 6. Length of set up time is measured at first cold start. Turning ON/OFF the power supply may lead to increase of the set up time.
- 7. No load power consumption<0.8W when RC+ & RC- (CN100 pin3,4) 0 \sim 0.8V or short.
- 8. When the input voltage is less than 40VAC, the SPS may exhibit degradation of performance. The final product manufacturers must re-confirm this deviation that does not affect basic safety or essential performance.

■ Function Description of CN100

Pin No.	Function	Description	
1	AUXG	Auxiliary voltage output ground. The signal return is isolated from the output terminals (+V & -V).	
2		Auxiliary voltage output, 4.75~5.25V, referenced to pin 1(AUXG). The maximum load current is 0.3A. This output has the built-in oring diodes and is not controlled by the "remote ON/OFF control".	
3	RC+	Turns the output on and off by electrical or dry contact between pin 4 (RC-), Short: Power OFF, Open: Power ON.	
4	RC-	Remote control ground.	
5	CS	Current sharing signal. When units are connected in parallel, the CS pins of the units should be connected to allow current balance between units.	
6,8	GND	This pin connects to the negative terminal(-V). Return for DC-OK signal output.	
7	DC-OK	DC-OK signal is a TTL level signal, referenced to pin8(DC-OK GND). High when PSU turns on.	
9	+S	Positive sensing. The +S signal should be connected to the positive terminal of the load. The +S and -S leads should be twisted in pair to minimize noise pick-up effect. The maximum line drop compensation is 0.5V.	
10	-S	Negative sensing. The -S signal should be connected to the negative terminal of the load. The -S and +S leads should be twisted in pair to minimize noise pick-up effect. The maximum line drop compensation is 0.5V.	

■ Function Manual

1.Remote Sense

The remote sensing compensates voltage drop on the load wiring up to 0.5 V.

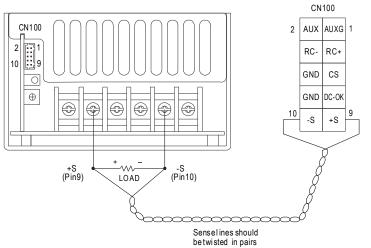
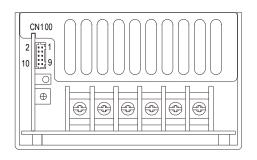



Fig 1.1

2.DC-OK Signal

DC-OK signal is a TTL level signal. High when PSU turns on.

-	_
Between DC-OK(pin7) and GND(pin6,8)	Output Status
3.3 ~ 5.6V	ON
0 ~ 1V	OFF

CN100

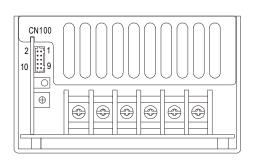
2 AUX AUXG 1

RC- RC+

GND CS

GND DC-0K

10 -S +S 9


Fig 2.1

3.Remote Control

The PSU can be turned ON/OFF by using the "Remote Control" function.

Between RC+(pin3) and RC-(pin4)	Output Status
SW ON (Short)	OFF
SW OFF (Open)	ON

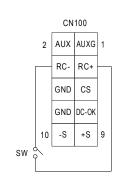
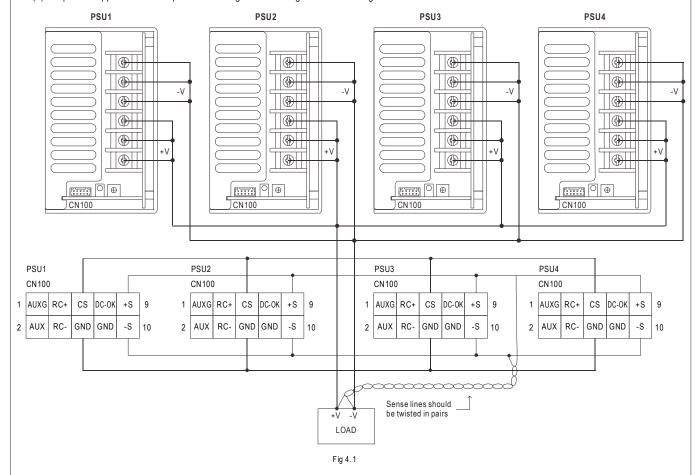



Fig 3.1

4. Current Sharing with Remote Sensing (Only for 24V, 36V and 48V)

MSP-600 has the built-in active current sharing function and can be connected in parallel to provide higher output power:

- (1) Parallel operation is available by connecting the units shown as below.
 - (+S,-S,CS and GND are connected mutually in parallel).
- (2) Difference of output voltages among parallel units should be less than 2%.
- (3)The total output current must not exceed the value determined by the following equation. (output current at parallel operation)=(Rated current per unit)×(Number of unit)×0.9
- (4)In parallel operation 4 units is the maximum, please consult the manufacturer for applications of more connecting in parallel.
- (5) The power supplies should be paralleled using short and large diameter wiring and then connected to the load.

Note: 1. In parallel connection, maybe only one unit (master) operate if the total output load is less than 2% of rated load condition.

The other PSU (slave) may go into standby mode and its output LED and relay will not turn on.

2.2% min. of dummy load is required.