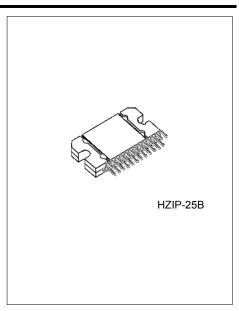
UTC UNISONIC TECHNOLOGIES CO., LTD

TDA7388

Preliminary

LINEAR INTEGRATED CIRCUIT

4 X 41W OUAD BRIDGE CAR RADIO AMPLIFIER


DESCRIPTION

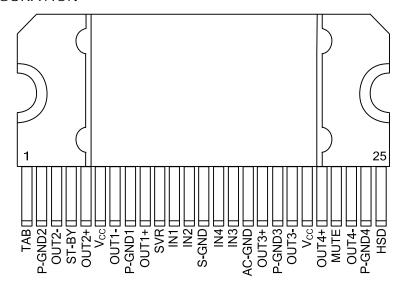
The UTC TDA7388 is a class AB Audio Power Amplifier. It allows a rail to rail output voltage swing with no need of bootstrap capacitors for the fully complementary PNP/NPN output configuration.

The UTC TDA7388 is suitable for high end car radio applications.

FEATURES


- * High Output Power@ V_{CC} =14.4V, f=1kHz, R_L=4 Ω :
- -4 x 41W Max.
- -4 x 25W @THD=10%
- * Rail to rail output voltage swing
- * Low THD & eNo

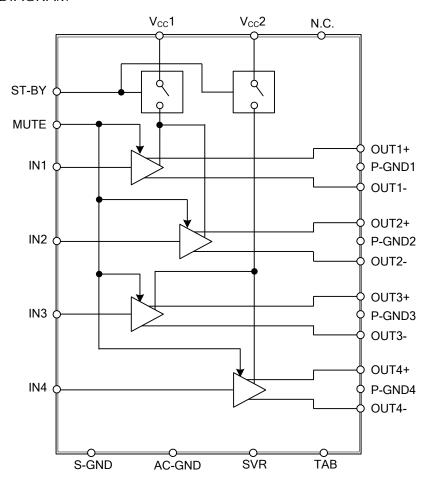
ORDERING INFORMATION


Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
TDA7388L-J25-B-T	TDA7388G-J25-B-T	HZIP-25B	Tube	

Note: xx: Output Voltage, refer to Marking Information.

www.unisonic.com.tw 1 of 5

PIN CONFIGURATION



Preliminary

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	TAB	Connect to GND
2	P-GND2	Power GND of Channel 2
3	OUT2-	Inverting Output of Channel 2
4	ST-BY	Stand-by
5	OUT2+	Non-Inverting Output of Channel 2
6	V_{CC}	Supply Voltage
7	OUT1-	Inverting Output of Channel 1
8	P-GND1	Power GND of Channel 1
9	OUT1+	Non-Inverting Output of Channel 1
10	SVR	Supply Voltage Rejection
11	IN1	Input of Channel 1
12	IN2	Input of Channel 2
13	S-GND	Signal GND
14	IN4	Input of Channel 4
15	IN3	Input of Channel 3
16	AC-GND	AC GND
17	OUT3+	Non-Inverting Output of Channel 3
18	P-GND3	Power GND of Channel 3
19	OUT3-	Inverting Output of Channel 3
20	V_{CC}	Supply Voltage
21	OUT4+	Non-Inverting Output of Channel 4
22	MUTE	Mute
23	OUT4-	Inverting Output of Channel 4
24	P-GND4	Power GND of Channel 4
25	HSD	No Connection

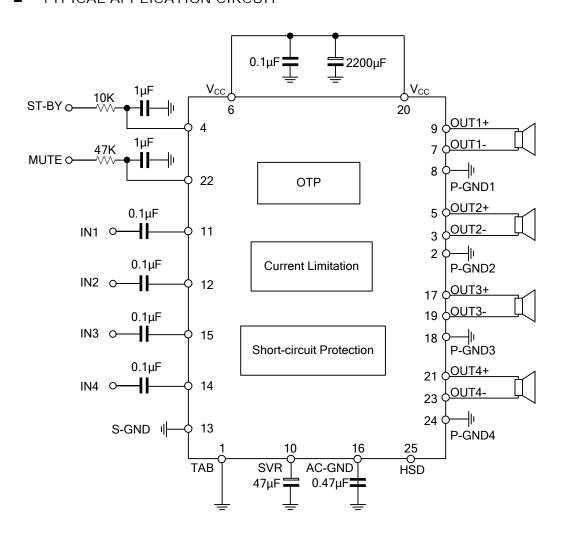
■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Operating Supply Voltage		V_{CC}	18	>
DC Supply Voltage		$V_{CC(DC)}$	28	>
Peak Supply Voltage (t = 50ms)		$V_{CC(PK)}$	50	>
Output Peak Current	Repetitive (Duty Cycle 10% at f = 10Hz)	I _o	4.5	А
	Non Repetitive (t = 100µs)		5.5	Α
Power Dissipation (T _C = 70°C)		P_D	80	W
Junction Temperature		TJ	150	°C
Storage Temperature		T_{STG}	-55 ~ 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA


PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ _{JC}	1	°C /W

■ ELECTRICAL CHARACTERISTICS (V_S =14.4V, f =1KHz, R_G =600 Ω , R_L =4 Ω , T_A =25°C, Refer to the Test and application diagram, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Quiescent Current	I_{Q1}	R _L =∞	120	190	350	mA
Output Offset Voltage	Vos	Play Mode			±80	mV
During Mute ON/OFF Output Offset Voltage	ΔV _{OS}				±80	mV
Voltage Gain	Gv		25	26	27	dB
Output Power	Po	THD = 10%, V_S = 14.4V	22	26		W
Max. Output Power (Note 1)	P _{O(MAX)}	V _S = 14.4V	38	41		W
Distortion	THD	P _O = 4W		0.04	0.15	%
Output Noise	_	"A" Weighted		50	70	μV
Output Noise	e _{NO}	B _W = 20Hz ~ 20KHz		70	100	μV
Supply Voltage Rejection	SVR	f = 100Hz, V _R = 1Vrms	50	65		dB
High Cut-Off Frequency	f_{CH}	P _O = 0.5W	100	200		KHz
Input Impedance	R_{l}		70	100		ΚΩ
Cross Talk	Ст	$f = 1KHz, P_O = 4W$	60	70		dB
		f = 10KHz, P _O = 4W	50	60		dB
St-By Current Consumption	I_{SB}				50	μΑ
St-By OUT Threshold Voltage	$V_{SB(OUT)}$	(Amp: ON)	3.5			V
St-By IN Threshold Voltage	$V_{SB(IN)}$	(Amp: OFF)			1.5	V
Mute Attenuation	A_{M}	P _{O(REF)} = 4W	80	90		dB
Mute OUT Threshold Voltage	$V_{M(OUT)}$	(Amp: Play)	3.5			V
Mute IN Threshold Voltage	$V_{M(IN)}$	(Amp: Mute)			1.5	V
V _S Automute Threshold	V _{AM(IN)}	(Amp: Mute), Att≥80dB, P _{O(REF)} =4Ω			6.5	V
		(Amp: Play), Att <0.1dB, P_O = 0.5 Ω		7.6	8.5	V
Muting Pin Current	I _{PIN22}	V _{MUTE} = 1.5V (Source Current)	5	11	20	μΑ

Note: 1. Saturated square wave output.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.