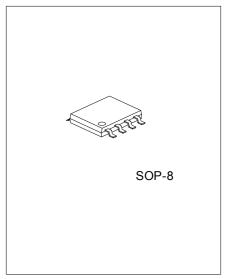
UNISONIC TECHNOLOGIES CO., LTD

A7623

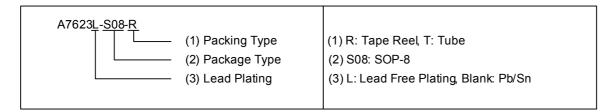
LINEAR INTEGRATED CIRCUIT


2×75Ω DRIVER IC WITH 3 **INTERNAL CIRCUITS**

DESCRIPTION

The UTC A7623 is a 75 driver-IC. It is a follower for video signals. It can be directly coupled to the previous stage because there is no internal bias at the input pin. When output is short to earth the IC enters power-save mode.

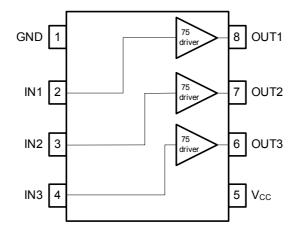
FEATURES


- * Triple channels.
- * Can be directly coupled to the previous circuit.
- * Each output can drive two loads (75 × 2).
- * Output short circuit protection.

*Pb-free plating product number: A7623L

ORDERING INFORMATION

Order Number		Dookogo	Dooking	
Normal	Lead Free Plating	Package	Packing	
A7623-S08-R	A7623L-S08-R	SOP-8	Tape Reel	
A7623-S08-T	A7623L-S08-T	SOP-8	Tube	



www.unisonic.com.tw 1 of 6

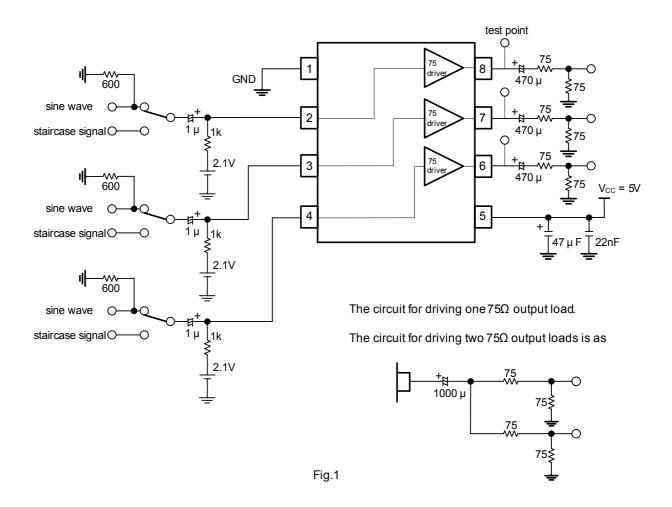
■ PIN DESCRIPTIONS

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Ground connection
2	IN1	Direct-coupling input
3	IN2	Input composite/component video (RGB) signals.
4	IN3	The operating input signal level is 0.5V to 3.8V.
5	V_{CC}	Power supply
6	OUT3	Direct-coupling output
7	OUT2	When short to ground a protection circuit operates, and the IC enters power-save
8	OUT1	mode.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Ta = 25)

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	Vcc	8.0	V
Power Dissipation	D	550	mW
Derating Rate at Ta=25°C	P_{D}	5.5	°C/mW
Operating Temperature	T _{OPR}	-25 ~ +75	°C
Storage Temperature	T _{STG}	-55 ~ + 125	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

(Ta = 25° C , V_{CC} = 5V, $V_{IN DC}$ =2.1V and load is two system drive)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	Vcc		4.5	5.0	5.5	V
Supply Current	Icc	No signal		25.2	37.8	mA
Voltage Gain	G_V	f = 1MHz, sine wave ,V _{IN} = 2.0V _{P-P}	-1.0	-0.5	0	dB
Maximum Output Level	$V_{O(MAX)}$	f = 1kHz, sine wave, THD = 1.0%	2.9	3.4		V_{P-P}
Frequency Characteristic	C_F	10MHz / 1MHz, sine wave $V_{IN} = 1.0V_{P-P}$	-3	0	1	dB
Inter Channel Crosstalk	Ст	$f = 4.43MHz$, sine wave $V_{IN} = 2.0V_{P-P}$		-60		dB
Total Harmonic Distortion	THD	f = 1kHz, sine wave, V _{IN} = 1.0V _{P-P}		0.1	0.5	%
Differential Gain 75 Drive 1	DG1			0.4	1.0	%
Differential Phase 75 Drive 1	DP1	V = 2.0VD D, standard staircess signal		0.4	1.0	deg
Differential Gain 75 Drive 2	DG2	V _{IN} = 2.0VP-P, standard staircase signal		0.7	2.0	%
Differential Phase 75 Drive 2	DP2			0.7	2.0	Deg

■ TEST CIRCUIT

■ APPLICATION CIRCUIT

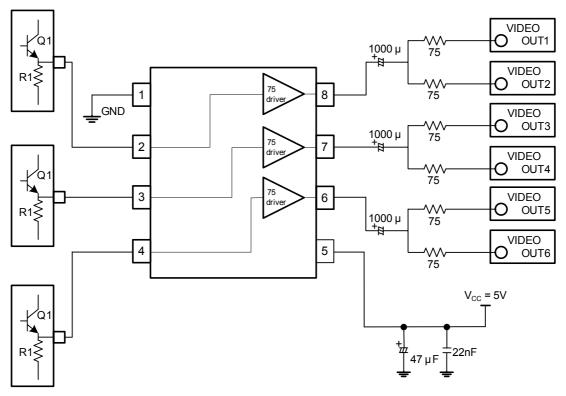
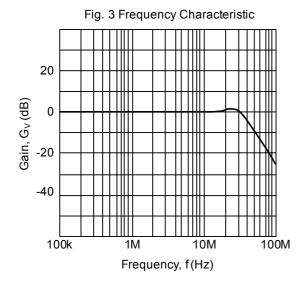
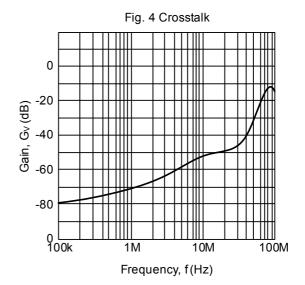




Fig.2

TYPICAL CHARACTERISTIC

OPERATION NOTES

- (1) The input signals are signals such as composite video signals, or component video (RGB) signals.
- (2) When using direct coupling, keep the input signals in the range: 0.5V to 3.8V.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.