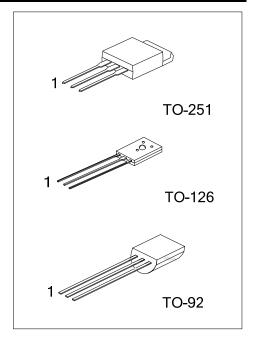
13003ADA

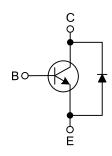
Preliminary

NPN SILICON TRANSISTOR

NPN SILICON BIPOLAR TRANSISTORS FOR LOW FREQUENCY AMPLIFICATION

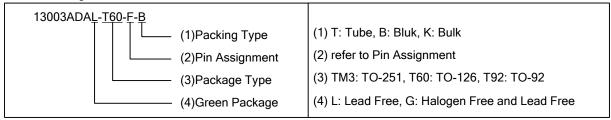

DESCRIPTION

The UTC 13003ADA is a silicon NPN power switching transistor; it uses UTC's advanced technology to provide customers high collector-base breakdown voltage, low reverse leakage current and high reliability, etc.


The UTC 13003ADA is suitable for electronic ballast power switch circuit and the compact electronic energy-saving light.

FEATURES

- * High collector-base breakdown voltage
- * Low reverse leakage current
- * High reliability


EQUIVALENT CIRCUIT

ORDERING INFORMATION

Ordering Number		_ .	Pin Assignment			
Lead Free	Halogen Free	Package Table 1		3	Packing	
13003ADAL-TM3-T	13003ADAG-TM3-T	TO-251	В	С	Е	Tube
13003ADAL-T60-F-K	13003ADAG-T60-F-K	TO-126	В	С	Е	Bulk
13003ADAL-T92-F-B	13003ADAG-T92-F-B	TO-92	В	С	Е	Tape Box
13003ADAL-T92-F-K	13003ADAG-T92-F-K	TO-92	В	С	Е	Bulk

Note: Pin Assignment: B: Base C: Collector E: Emitter

www.unisonic.com.tw 1 of 4

■ MARKING

PACKAGE	MARKING
TO-251	UTC 13003ADA ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
TO-126	Pin Code Data Code L: Lead Free 1 C: Halogen Free
TO-92	UTC 13003ADA □ L: Lead Free G: Halogen Free Pin Code

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Base Voltage		V_{CBO}	700	V
Collector-Emitter Voltage		V_{CEO}	450	V
Emitter-Base Voltage		V_{EBO}	9	V
Continuous Collector Current		I _C	1.5	Α
Power Dissipation (T _C =25°C)	TO-251		10	W
	TO-126	P_D	20	W
	TO-92		1	W
Junction Temperature		T _J	150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER .		SYMBOL	RATING	UNIT	
	TO-251		95		
Junction to Ambient	TO-126	θ_{JA}	107	°C/W	
	TO-92		150		
Junction to Case	TO-251		13		
	TO-126	θ_{JC}	7.5	°C/W	
	TO-92		100		

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	BV_CBO	I_{C} =0.1mA, I_{E} =0	700			V
Collector-Emitter Breakdown Voltage	BV_CEO	I _C =1mA, I _B =0	450			V
Emitter-Base Breakdown Voltage	BV_{EBO}	I _E =0.1mA, I _C =0	9			V
Collector Cut-Off Current	I _{CBO}	V_{CB} =700V, I_{E} =0			100	μΑ
Collector-Emitter Cut-Off Current	I _{CEO}	V _{CE} =450V, I _B =0			50	μΑ
Emitter-Base Cut-Off Current	I _{EBO}	V_{EB} =7 V , I_{C} =0			10	μΑ
	h _{FE}	V_{CE} =5V, I_{C} =5mA	6		40	
DC Current Gain (Note)		V_{CE} =10V, I_{C} =200mA	8		40	
		V _{CE} =5V, I _C =1.5mA	4			
Low current and high current hand he ratio	h /h	h _{FE1} : V _{CE} =5V, I _C =5mA	0.75	8.0		
Low current and high current h _{FE2} h _{FE1} ratio	h _{FE1} / h _{FE2}	h _{FE2} : V _{CE} =5V, I _C =0.2A				
Collector-Emitter Saturation Voltage (Note)	$V_{CE(SAT)}$	I _C =0.5A, I _B =0.1A		0.18	0.8	V
Base-Emitter Saturation Voltage (Note)	$V_{BE(SAT)}$	I _C =1.5A, I _B =0.5A		0.9	2.0	V
Storage Time	t _S				4	μs
Rise Time	t_R	V _{CC} =24V, I _C =0.5A, I _{B1} =-I _{B2} =0.1A				μs
Fall Time	t_{F}				0.7	μs
Transition Frequency	f_T	V _{CE} =10V, I _C =0.2A	4			MHz

Note: Pulse test, pulse width tp≤300µs, Duty cycle≤2%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

