

UTC UNISONIC TECHNOLOGIES CO., LTD

U8021

Preliminary

CMOS IC

VOLTAGE MODE PWM CONTROLLER WITH LINEAR POWER REGULATOR

DESCRIPTION

The UTC U8021 provides the control and protection features necessary for a synchronous buck converter and a linear regulator in high performance graphic card applications.

The UTC U8021 is designed to directly drive the high and low MOSFETs of the buck converter. It allows the converter to operate with 4V~25V power rail and as low as 0.5V output. The UTC U8021 is capable to drive a N-type MOSFET in a linear regulator with as low as 0.5V output.

The UTC U8021 features soft-start, UVLO, and OCP. The UTC U8021 monitors the output current by using the Rdson of the low MOSFET in the buck converter that eliminates the need for a current sensing resistor.

FEATURES

- * 4V~25V power rails
- * Internal LDO
- * 1.5A gate drive current
- * Adaptive non-overlapping gate drives provide shoot-through protection for MOSFETs
- * Programmable output voltages
- * Internal soft start
- * Under voltage lockout
- * Short circuit protection

ORDERING INFORMATION

Ordering Number		Dookogo	Dealing	
Lead Free	Halogen Free	Раскауе	Packing	
U8021L-S14-T	U8021G-S14-T	SOP-14	Tube	
U8021L-S14-R	U8021G-S14-R	SOP-14	Tape Reel	

U8021 <u>L-S14</u> - <u>T</u>		
	(1)Packing Type	(1) T: Tube, R: Tape Reel
	(2)Package Type	(2) S14: SOP-14
	(3)Halogen Free	(3) L: Lead Free, G: Halogen Free

■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	BST	Boost input for top gate drive bias.
2	OCS	Current limit setting.
3	COMP	Compensation PIN.
4	FB	Feedback voltage
5	LDOG	External LDO gate drive.
6	LDFB	External LDO feedback voltage.
7	GND	Ground.
8	V _{cc}	Power supply.
9	NC	No Bonding.
10	DRV	Internal LDO output.
11	DL	Gate drive for low MOSFET.
12	GND	Ground.
13	PN	Phase PIN.
14	DH	Gate drive for high MOSFET.

U8021

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.

PARAMETER	SYMBOL	RATINGS	UNIT
Input Supply Voltage	V _{CC}	18	V
BST to GND	V _{BST}	40	V
BST to PN	V _{BST PN}	10	V
PN to GND	V _{PN}	-1~30	V
PN to GND Negative Pulse (t _{pulse} <20ns)	V _{PN PULSE}	-5	V
DL to GND	V _{DL}	-1~+10	V
DL to GND Negative Pulse (t _{pulse} <20ns)	V _{DL PULSE}	-3	V
DH to PN	V _{DH_PN}	-1~+10	V
DH to PN Negative Pulse (t _{pulse} <20ns)	V _{DH PULSE}	-3	V
DRV to GND	V _{DRV}	10	V
Operating Ambient Temperature Range	T _A	-25~85	°C
Operating Junction Temperature	TJ	-25~125	°C
Storage Temperature	T _{STG}	-65~150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL RESISTANCES

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ _{JA}	100	°C/W	
Junction to Case	θις	32	°C/W	

■ ELECTRICAL CHARACTERISTICS

(Unless specified: V_{CC}= 5V~16V, V_{FB}=V_{OUT}, V_{BST}-V_{PN}=5V~8.2V, T_A=-25°C~85°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
General	General						
V _{cc} Supply Voltage	V _{CC}		4		16	V	
V _{CC} Quiescent Current	lavcc	V _{CC} =12V, V _{BST} -V _{PN} =8.2V		5	7	mA	
V _{CC} Under Voltage Lockout	UV _{VCC}	V _{HYST} =100mV			4	V	
BST to PN Supply Voltage	V _{BST_PN}		4		10	V	
BST Quiescent Current	I _{QBST}	V_{CC} =12V, V_{BST} - V_{PN} =8.2V			3	mA	
Internal LDO							
LDO Output	V _{DRV}	8.6V <v<sub>CC<16V</v<sub>		8		V	
Dropout Voltage	VDROP	4V <v<sub>CC<8.6V</v<sub>		0.4		V	
Linear Section					-		
Reference Voltage	V _{OL}	$L_{DFB}=V_{OL}, T_A=25^{\circ}C, V_{CC}=12V$	0.65	0.75	0.85	V	
Load Regulation		I _O =0~1A, V _{IN} =3.3V, V _{CC} =12V			0.4	%	
Line Regulation		V _{IN} =3.2V~3.4V, V _{CC} =12V			0.4	%	
V _{CC} Supply Rejection		V _{IN} =3.3V, V _{CC} =10V~14V			0.4	%	
Gate Sourcing Current		VGATE=6.5V		1		mA	
Gate Sinking Current		VGATE=6.5V		1		mA	
LDFB Input Bias Current		LDFB=.5V		-0.2	-1.0	uA	
Soft Start Time		V _{IN} =3.3V, V _{CC} =12V T _A =25°C		1.5		ms	
Switching Section							
Reference Voltage	V _{REF}	T _A =25°C, V _{CC} =12V	0.495	0.500	0.505	V	
Load Regulation		I _O =0.2~4A		0.4		%	
Line Regulation		V _{CC} =10V~14V		0.4		%	
Operating Frequency	Fs		500	600	700	KHz	
Ramp Amplitude (Note 2)	Vm			0.8		V	
Maximum Duty Cycle (Note 2)	D _{MAX}			97		%	
Minimum On-Time (Note 2)	T _{ON_MIN}			125		ns	
DLI Dising/Falling Time	t _{SRC DH}	6V Swing at C _L =3.3nF,		40		20	
DH Rising/Failing Time	t _{SINK_DH}	V _{BST} -V _{PN} =8.2V		25		ns	
	t _{SRC DL}	6V Swing at C _L =3.3nF,		30			
DL Rising/Failing Time	t _{SINK_DL}	V _{DRV} =8.2V		40		ns	
DH, DL Nonoverlapping Time				30		ns	
Voltage Error Amplifier							
Output Source Current				0.9		mA	
Output Sink Current				0.9		mA	

Notes: 1. This device is ESD sensitive. Use of standard ESD handling precautions is required.

2. Guaranteed by design, not tested in production.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

