UTC UNISONIC TECHNOLOGIES CO., LTD

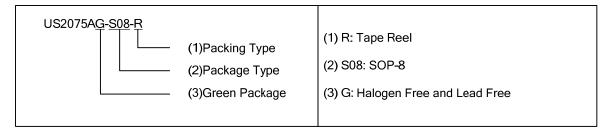
US2075A CMOS IC

DUAL-CHANNEL POWER DISTRIBUTION CONTROL SWITCH FOR USB

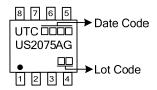
DESCRIPTION

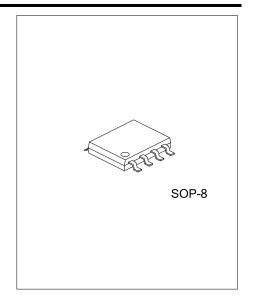
The UTC US2075A is a dual channel power switch with independent enable and flag functions, optimized for bus-powered Universal Serial Bus (USB) and self-powered applications.

This product satisfies USB voltage drop requirement with soft start, which eliminates the momentary voltage drop on the upstream port that may occur.

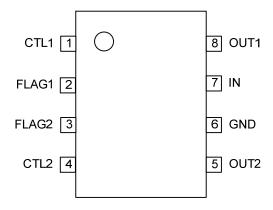

equipped In addition, the UTC US2075A is over-temperature and over-current detectors, each flag output is available to indicate fault conditions independently to the USB controller. The UTC US2075A is available in active-low versions.

FEATURES


- * 100 µA MAX operating current
- * 5µA MAX standby current
- * 3.5V ~ 5.5V operating range
- * Two P-channel power MOSFET control switch
- * Over-current protection
- * Under-voltage lockout circuit
- * Thermal shutdown circuit
- * Soft-start circuit
- * Flag indicates fault conditions


ORDERING INFORMATION

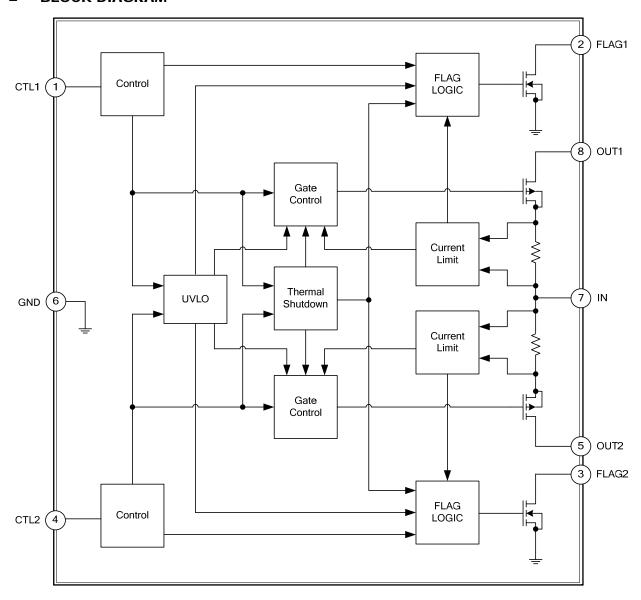
Ordering Number	Package	Packing
US2075AG-S08-R	SOP-8	Tape Reel


MARKING

www.unisonic.com.tw 1 of 10

■ PIN CONFIGURATION

■ PIN DESCRIPTION


PIN NO	PIN NAME	DESCRIPTION
1	CTL1	Switch1 Control Input: Logic-compatible, active-low. TTL input
2	FLAG1	Fault Detection Flag 1 (OUTPUT): Active-low. N-ch open-drain. Indicates over-current, thermal shutdown, or UVLO conditions
3	FLAG2	Fault Detection Flag 2 (OUTPUT): Active-low. N-ch open-drain. Indicates over-current, thermal shutdown, or UVLO conditions
4	CTL2	Switch2 Control Input: Logic-compatible, active-low. TTL input
5	OUT2	Switch2 Output: Drain of MOSFET for output. Usually, connected to Load
6	GND	Ground
7	IN	Power Input: Source of MOSFET for output. Power supply to Internal circuit
8	OUT1	Switch1 Output: Drain of MOSFET for output. Usually, connected to Load

■ TRUTH TABLE (H: High, L: Low, ON: Turn on, OFF: Turn off, X: H or L)

CTL1 (IN)	FLAG1 (OUT)	OUT1 (OUT)	CTL2 (IN)	FLAG2 (OUT)	OUT2 (OUT)	Operation Mode
L	Н	ON	L	Н	ON	Normal Operation
L	Н	ON	Н	Н	OFF	Only OUT1 is ON.
Н	Н	OFF	L	Н	ON	Only OUT2 is ON.
Н	Н	OFF	Н	Н	OFF	Standby Mode
L	L	ON	L	Н	ON	Over current Detection Only for OUT1
L	Н	ON	L	L	ON	Over current Detection Only for OUT2
X	L	OFF	Χ	L	OFF	Thermal Shutdown Circuit Operation
X	L	OFF	Χ	L	OFF	Under voltage Lockout Circuit Operation

US2075A

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

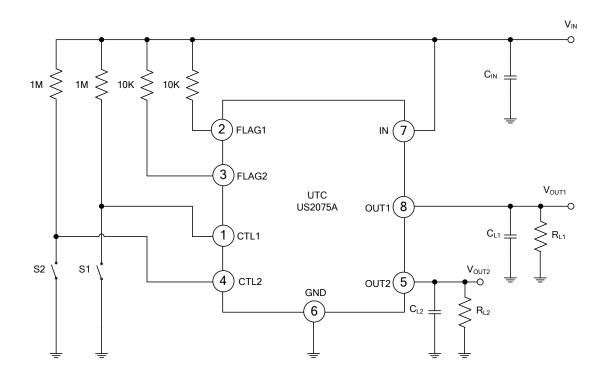
PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	-0.3 ~ +6	V
Flag Voltage	V_{FLAG}	-0.3 ~ +6	V
Flag Current	I _{FLAG}	50	mA
Output Voltage	V_{OUT}	V _{IN} +0.3	V
Output Current	I _{OUT}	-0.1 ~ +0.5	Α
Control Input	V_{CTL}	-0.3 ~ +6	V
Total Power Dissipation	P_{D}	300	mW
Junction Temperature	TJ	+150	°C
Operating Temperature	T _{OPR}	0 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

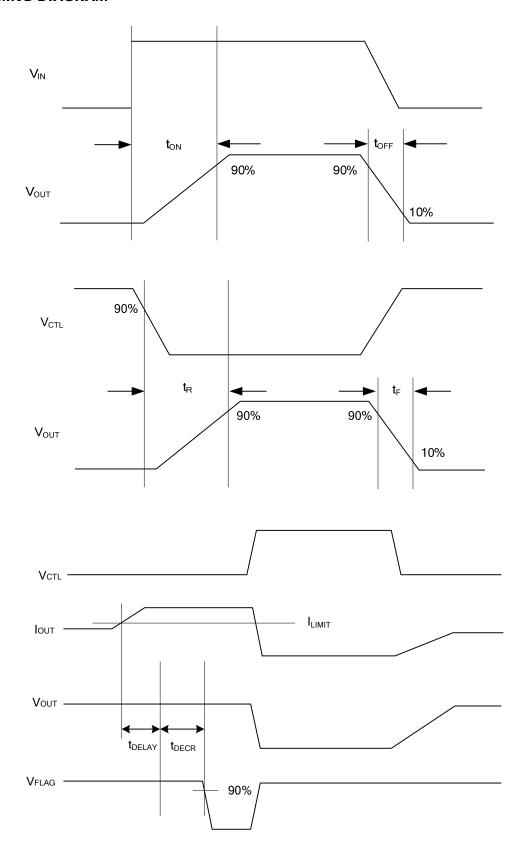
■ RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Thermal Shutdown Protection	_	Temperature Rising		150		°C
	I SHDN	Temperature Hysteresis		5	10	°C

■ DC ELECTRICAL CHARACTERISTICS (V_{IN}=+5V, T_{OPR}=+25°C, Unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	V_{IN}		3.5	5	5.5	V
CTL Voltage, Low	V_{IL}	CTL Pin (Note)			1.0	V
CTL Voltage, High	V_{IH}	CTL Pin (Note)	2.0			V
		V _{IN} =Increasing	2.2	2.5	2.8	V
Under-Voltage Lockout	V_{UVLO}	V _{IN} =Decreasing	2.0	2.3	2.6	V
		Hysteresis Voltage	0.05		0.25	V
Supply Current	I _{SW_ON}	V _{CTL} =GND			100	μA
	I _{SW_OFF}	$V_{OUT1}=V_{OUT2}=Open$ $V_{CTL}=V_{IN}$ $V_{OUT1}=V_{OUT2}=Open$		1	5	μА
Output Leakage Current	I _{O(LEAK)}	V _{CTL} = V _{IN}			10	μA
Flag Leakage Current	I _{F(LEAK)}	V _{FLAG} =5V		0.1	1	μA
Current Limit	I _{LIMIT}	T _a =0~80°C	0.8	0.9	1.25	Α
Flag Output Resistance	R _{out}	I _L =10mA		10	20	Ω
Output MOSFET on-Resistance	R _{ON}	I _{OUT} =500mA		105	145	mΩ

Note: ON is CTL<1.0V and OFF is CTL>2.0V


■ AC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Turn-on Rise Time	t _R	R _L =10Ω, Per Output	2.5	5	8	ms
Output Turn-off Fall Time	t _F	R _L =10Ω, Per Output			10	μs
Over-Current Detection Delay Time	t _{DELAY}			20		μs
Over-Current Detection Output Rise Time	t _{DECR}	R _L =10Ω, Per Output	2.5	5	8	ms

■ TEST CIRCUIT

■ TIMING DIAGRAM

■ FUNCTIONAL DESCRIPTION

The UTC **US2075A** is dual P-Channel switch with active-low and active-high enabled inputs, respectively. Fault conditions (such as UVLO, thermal shutdown and over-current) that appear will turn off the power switch, and the FLAG pin will go low. Of course, the two internal FLAG circuits also operate respectively.

INPUT AND OUTPUT

IN (Input) is the power supply connection to the control circuitry and the source of the output MOSFET. OUTX (Output) is the connection to the drain of the output MOSFET. In a typical application circuit, current flows through the switch from IN to OUTX towards the load. If V_{OUT} is greater than V_{IN} when the switch is enabled, current will flow from OUTX to IN since the MOSFET is bi-directional.

POWER ON AND OFF

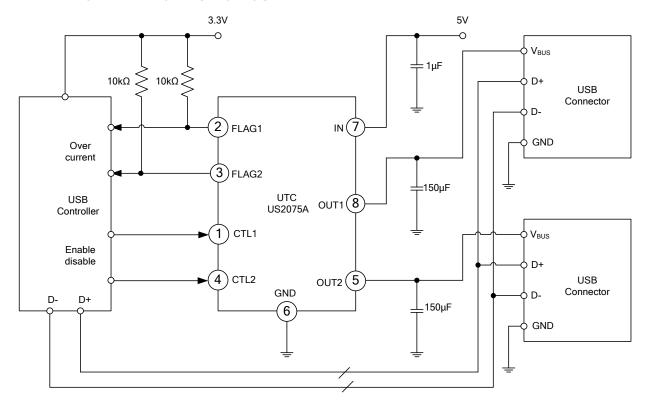
The UTC **US2075A** performs a soft-start operation on power application, which is to prevent an over-current or inrush-current from flowing through the switch from IN to OUTX towards to the load, while the high-capacity capacitor is connected to the OUTX.

THERMAL SHUTDOWN

The UTC **US2075A** is internally protected against excessive power dissipation by thermal shutdown protection circuit. If device junction temperature rise above approximately 150°C, both switches are turned off, both fault FLAG outputs are activated, and they goes low. Hysteresis ensures that both switches turned off by thermal shutdown will not be turned on again until the die temperature is reduced to 145°C. When the thermal shutdown circuit is activated, the output pins are in the OFF status. However, the UTC **US2075A** enters the standby status when CTL pins are all inactive.

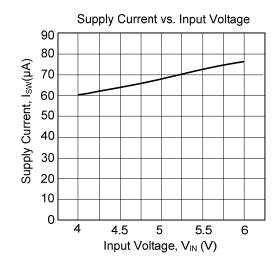
CURRENT LIMIT

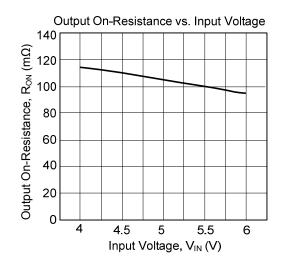
The current limit circuit is designed to protect the output MOSFET, the load and the IC supply from damage caused by excessive currents. The current limit threshold is preset internally, If an over-current is detected, the IC performs a slow-start operation again, it is assumed that output is short circuit, and FLAG pin will go low, FLAG output is available to indicate fault conditions independently to the USB controller.

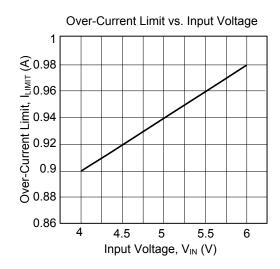

UNDER-VOLTAGE LOCKOUT

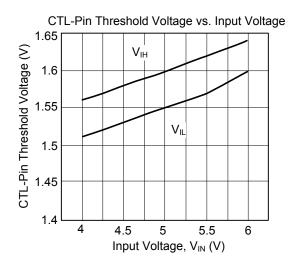
UVLO prevents the output MOSFET switch from turning on until input voltage exceeds 2.5V (typical). If input voltage drops below 2.3V (typical), UVLO shuts off the both output MOSFET switches and signals the FLAG.

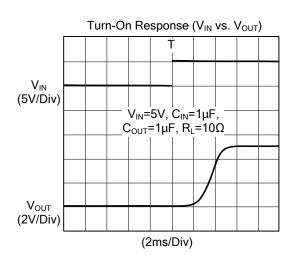
FAULT FLAG

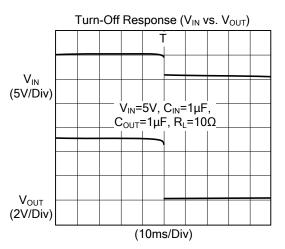

The fault FLAG is an output with open-drain of N-channel. The fault FLAG is pulled down when any of the conditions such as under-voltage, current limit and thermal shutdown. In a typical application circuit, the FALG pin has a pull-up resistor of $10k\Omega$ to input voltage.

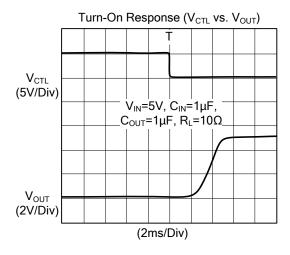

■ TYPICAL APPLICATION CIRCUIT

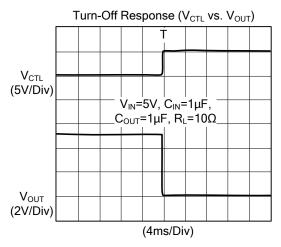


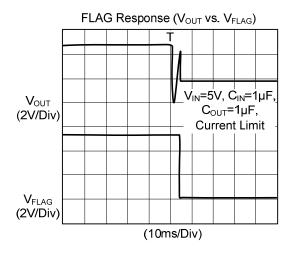

TWO USB output ports controllable by USB controller

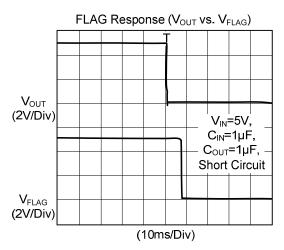

■ TYPICAL CHARACTERISTICS











■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.