

UTC UNISONIC TECHNOLOGIES CO., LTD

US12231

Preliminary

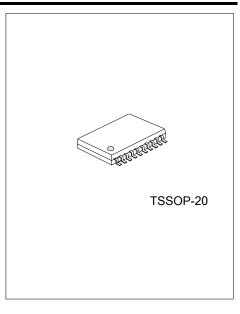
CMOS IC

EXPRESSCARD[™] POWER INTERFACE SWITCH

DESCRIPTION

The UTC **US12231** ExpressCard[™] power interface switches are designed to meet the ExpressCardTM specification. The UTC US12231 distribute 3.3V, AUX, and 1.5V to the single-slot ExpressCard|34 or ExpressCard|54 sockets. Each voltage rail is protected with integrated current-limiting circuitry, other functions include thermal protection circuit turns off switches to prevent device from damage when heavy overloads or short circuits,

The UTC US12231 can use in notebook computers, desktop computers, PDAs, and digital cameras.

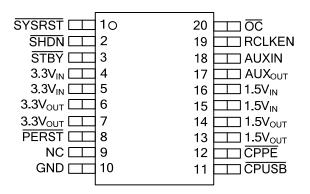

FEATURES

- * Meets the ExpressCardTM standard (ExpressCard|34 or ExpressCard|54)
- * Compliant with the ExpressCard[™] compliance checklists
- * Fully satisfies the ExpressCardTM implementation guidelines
- * Supports systems with WAKE function
- * TTL-Logic compatible inputs
- * Short circuit and thermal protection
- * -40°C ~ 85°C ambient operating temperature range

ORDERING INFORMATION

Ordering	Number	Deelvere	Decking
Lead Free	Halogen Free	Package	Packing
US12231L-P20-T	US12231G-P20-T	TSSOP-20	Tube
US12231L-P20-R	US12231G-P20-R	TSSOP-20	Tape Reel

US12231L- <u>P20-T</u> [(1)Packing Type	(1) T: Tube, R: Tape Reel
(2)Package Type	(2) P20: TSSOP-20
(3)Lead Free	(3) L: Lead Free, G: Halogen Free

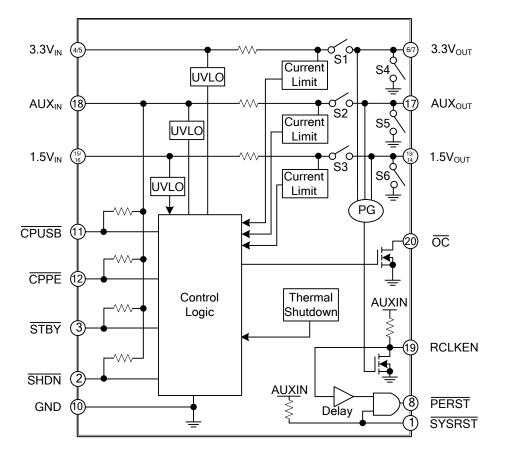

[※] ExpressCard is a trademark of Personal Computer Memory Card International Association.

US12231

MARKING INFORMATION

PACKAGE	MARKING				
TSSOP-20	20 10 10 10 12 12 10 10 12 34 15 12 10 <t< td=""></t<>				

■ PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION
1	SYSRST	Ι	System Reset input – active low, logic level signal. Internally pulled up to AUXIN.
2	SHDN	I	Shutdown input – active low, logic level signal. Internally pulled up to AUXIN.
3	STBY	I	Standby input – active low, logic level signal. Internally pulled up to AUXIN.
4, 5	3.3V _{IN}	I	3.3-V input for 3.3VOUT
6, 7	3.3V _{OUT}	0	Switched output that delivers 0 V, 3.3 V or high impedance to card
8	PERST	0	A logic level power good to slot 0 (with delay)
9	NC		No connection
10	GND		Ground
11	CPUSB	I	Card Present input for USB cards. Internally pulled up to AUXIN.
12	CPPE	I	Card Present input for PCI Expresscards [™] . Internally pulled up to AUXIN
13, 14	1.5V _{OUT}	0	Switched output that delivers 0 V, 1.5 V or high impedance to card
15,16	1.5V _{IN}	I	1.5-V input for 1.5VOUT
17	AUX _{OUT}	0	Switched output that delivers 0 V, AUX or high impedance to card
18	AUX _{IN}	I	AUX input for AUXOUT and chip power
19	RCLKEN	I/O	Reference Clock Enable signal. As an output, a logic level power good to host for slot 0 (no delay – open drain). As an input, if kept inactive (low) by the host, prevents PERST from being de-asserted. Internally pulled up to AUXIN.
20	OC	0	Overcurrent status output for slot 0 (open drain)

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (Over operating free-air temperature range (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT	
		1.5V _{IN}	-0.3~6		
Input Voltage Range For Card Power	V _{IN}	3.3V _{IN}	-0.3~6	V	
		AUX _{IN}	-0.3~6		
Logic Input/Output Voltage			-0.3~6	V	
		1.5V _{IN}	-0.3~6		
Output Voltage Range	V _{OUT}	3.3V _{IN}	-0.3~6	V	
		AUX _{IN}	-0.3~6		
Continuous Total Power Dissipation			See dissipation rat	ting table	
		1.5V _{IN}	Internally limited		
Output Current	I _{OUT}	3.3V _{IN}	Internally limited		
	NIN $1.5V_{IN}$ VIN $3.3V_{IN}$ AUX _{IN} VOUT $1.5V_{IN}$ VOUT $3.3V_{IN}$ VOUT $3.3V_{IN}$ IOUT $1.5V_{IN}$ IOUT $3.3V_{IN}$ IOUT $3.3V_{IN}$ IOUT $3.3V_{IN}$ Interna AUX_IN Interna IOUT $3.3V_{IN}$ Interna AUX_IN Interna Erature Range T_J	Internally limited			
OC Sink Current			10	mA	
PERST Sink/Source Current			10	mA	
Operating Virtual Junction Temperature Range	TJ		-40~+120	°C	
Storage Temperature Range	T _{STG}		-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

DISSIPATION RATINGS (Thermal Resistance=°C/W)

PARAMETER	SYMBOL	RATINGS	UNIT
POWER RATING (T₄≤25°C)		704.2	mW

Note: These devices are mounted on a JEDEC low-k board (2-oz. traces on surface), (The table is assuming that the maximum junction temperature is 120°C).

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage		1.5V _{IN}	1.5V _{IN} is only required for its respective functions	1.35		1.65	
	V _{IN}	3.3V _{IN}	3.3V _{IN} 3.3V _{IN} is only required for its respective functions			3.6	V
		AUX _{IN}	AUX _{IN} is required for all circuit operations	3		3.6	
		1.5V _{OUT}		0		650	mA
Continuous Output Current	I _{OUT}	3.3V _{OUT}		0		1.3	Α
		AUX _{OUT}		0		275	mA
Operating Virtual Junction Temperature	TJ			-40		120	°C

ELECTRICAL CHARACTERISTICS

 $T_{J}=25^{\circ}C, V_{I(3.3VIN)}=V_{I(AUXIN)}=3.3V, V_{I(1.5VIN)}=1.5V, V_{I(/SHDNx)}, V_{I(/STBYx)}=3.3V, V_{I(/CPPEx)}=V_{I(/CPUSBx)}=0V, V_{I(/SYSRST)}=3.3V, \overline{OCx} \text{ and } \overline{PERSTx} \text{ are open, all voltage outputs unloaded (unless otherwise noted)}$

PARAME	TER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				TJ=25°C, I=650mA each		46		
	1.5V _{IN} ~1.5V _{OUT}			TJ=100°C, I=650mA each			70	mΩ
Develop On itals Deviators				Tյ=25°C, I=1300mA each		45		
Power Switch Resistance	3.3V _{IN} ∼3.3V ₀	UT	R _{DS}	T _J =100°C, I=1300mA each			68	mΩ
				Tյ=25°C, I=275mA each		120		
	aux _{in} ~aux _o	UT		TJ=100°C, I=275mA each			200	mΩ
Discharge Resistance On 3.3	//1.5V/AUX O	utputs	R _(DIS_FET)	V _{I(/SHDNx)} =0V, I _(discharge) =1mA	100		500	Ω
		1.5V _{оυт}			0.67	1	1.3	А
Short -Circuit Output Current (Note 1)	Steady-State Value	3.3V _{out}	I _{os}	T _J (-40~120°C), Output powered into a short	1.35	2	2.5	А
·		AUX _{OUT}			275	450	600	mA
Thermal	Trip Point, T _J		TJ	Rising temperature, not in overcurrent condition	155	165		°C
Shutdown			T _{J_OC}	Overcurrent condition	120	130		
	Hysteresis		ΔΤ			10		°C
	From Short T			$V_{O(3.3VOUT)}$ with 100-m Ω short		43	100	
Current	Threshold Within 1.1Times Of Final Current Limit, Tյ=25°C			$V_{O(1.5VOUT)}$ with 100-m Ω short		100	140	μs
-Limit Response Time				$V_{O(AUXOUT)}$ with 100-m Ω short		38	100	P
Operation Input Quiescent	Normal	1.5V _{IN}	- - -	Outputs are unloaded,		2.5	10	
Current	Operation 3.3V _{IN}	3.3V _{IN}		T_{J} (-40, 120°C) (does not include \overline{CPPEx} and \overline{CPUSBx} logic pullup currents)		10	15	μA
ouncil		AUX _{IN}				85	150	
		1.5V _{IN}		Outputs are unloaded, T_{J} (-40, 120°C) (include \overline{CPPEx} and \overline{CPUSBx} logic pullup currents) $\overline{CPUSB} = \overline{CPPE} = 0V$, $\overline{SHDN} = 0V$		2.5	10	
	Normal	3.3V _{IN}				10	15	μA
	Operation					120	210	
Total Input Quiescent Current		1.5V _{IN}	l,			0.5	10	
	Shutdown Mode	3.3V _{IN}		(discharge FETs are on) (include <u>CPPEx</u> and <u>CPUSBx</u> logic pullup		3.5	10	μA
		AUX _{IN}		currents and SHDN pullup current) T _J (–40, 120°C)		144	270	
		1.5V _{IN}		$\overline{\text{SHDN}}$ =3.3V, $\overline{\text{CPUSB}}$ = $\overline{\text{CPPE}}$ = 3.3V (no card present, discharge FETs are on),		0.1	50	
Forward Leakage Current		3.3V _{IN}	I _{lkg(FWD)}	current measured at input pins,		0.1	50	μA
		AUX _{IN}		T _J =120°C, includes RCLKEN pullup current		20	50	1
	TJ=25°C	4 51/				0.1	10	
	T _J =120°C			V _{O(AUXOUT)} =V _{O(3.3VOUT)} =3.3V,			50	μA
Reverse Leakage Current	TJ=25°C	2 21/		V _{O(1.5VOUT)} =1.5V, All voltage inputs are		0.1	10	
NEVERSE LEARAYE GUITEII	TJ=120°C	3.3V _{IN}		grounded (current measured from output			50	μA
	TJ=25°C	AUX _{IN}		pins going in)		0.1	10	
	TJ=120°C						50	μA

ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LOGIC SECTION (SYSRST, SI	IDNx , STBY>	, PERSTx , R	CLKENx, OCx, CPUSBx, CPPE	x)			
LOGIC SECTION (SYSRST , SHDNx , STBYx		I _(SYSRST)	SYSRST =3.6V, sinking		0	1	μA
Logic Input Supply Current	Input	$I_{\overline{(SYSRST)}}$	SYSRST =0V, sourcing	10	0	1 30	μA
		1	SHDNx =3.6V, sinking		0	1	
	Input	(SHDNx)	SHDNx =0V, sourcing	10		30	μA
		1	STBYx =3.6V, sinking		0	1	
	Input	(STBYx)	STBYx =0V, sourcing	10		30	μA
	Input	I _(RCLKENx)	RCLKENx=0V, sourcing	10		30	μA
		I	$\overline{\text{CPUSB}}$ or $\overline{\text{CPPE}}$ =0V, sinking		0	1	
	Inputs	Or I _(CPPEx)	$\overline{\text{CPUSB}}$ or $\overline{\text{CPPE}}$ =3.6V, sourcing	10		30	μA
	High Level	VIH		2			
Logic Input Voltage	Low Level	VIL				0.8	V
RCLEN Output Low Voltage	Output	V _{OL(RCLEN)}	I _{O(RCLKEN)} =60μA			0.4	V
PERST Assertion Threshold Of	Output	V _{PG(3.3VIN)}	3.3V _{OUT} falling	2.7		3	
Voltage (PERST Asserted Wher	•	V _{PG(AUXIN)}	AUX _{OUT} falling			3	V
Voltage Falls Below The Thresho	Voltage Falls Below The Threshold)		1.5V _{OUT} falling			1.35	
PERST Assertion Delay From O	utput Voltage	$t_{\text{FD}(\overline{\text{PERST})}}$	3.3V _{OUT} , AUX _{OUT} , or 1.5V _{OUT} falling			500	ns
PERST De-assertion Delay Fror Voltage	n Output	$t_{\text{RD}(\overline{\text{PERST})}}$	$3.3V_{OUT}$, AUXOUT, and $1.5V_{OUT}$ rising within tolerance	4	10	20	ms
PERST Assertion Delay From S	YSRST	$t_{FD2(PERST)}$	Max time from SYSRST asserted or de-asserted			500	ns
PERST Minimum Pulse Width		$t_{W(\overline{PERST})}$	3.3V _{OUT} , AUX _{OUT} , or 1.5V _{OUT} falling out of tolerance or triggered by SYSRST	100	250		μs
PERST Output Low Voltage		$V_{OL}\overline{(PERST)}$				0.4	V
PERST Output High Voltage		$V_{OH(\overline{PERST})}$	Ι _{Ο(PERST)} =500μΑ	2.4			V
OC Output Low Voltage		$V_{OL\overline{(OC)}}$	I _{O(/OC)} =2mA			0.4	V
OC Leakage Current		$I_{IKG(OC)}$	V _{O(/OC)} =3.6V			1	μA
OC Deglitch		$t_{D(\overline{OC})}$	Falling into or out of an overcurrent condition	6		20	mS
UNDERVOLTAGE LOCKOUT (JVLO)			ł			-
3.3V _{IN} UVLO		V _{UVLO(3.3VIN)}	$3.3V_{\text{IN}}$ level, below which $3.3V_{\text{IN}}$ and $1.5V_{\text{IN}}$ switches are off	2.6		2.9	V
1.5V _{IN} UVLO		VUVLO(1.5VIN)	$1.5V_{\text{IN}}$ level, below which $3.3V_{\text{IN}}$ and $1.5V_{\text{IN}}$ switches are off	1		1.25	
AUX _{IN} UVLO		V _{UVLO(AUXIN)}	AUX _{IN} level, below which all switches are off	2.6		2.9	
UVLO Hysteresis		ΔV_{UVLO}			100		mV

Note: Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. ELECTRICAL CHARACTERISTICS(Cont.)

SWITCHING CHARACTERISTICS

 $\frac{T_{J}=25^{\circ}C, V_{I(3.3VIN)}=V_{I(AUXIN)}=3.3V, V_{I(1.5VIN)}=1.5V, V_{I(/SHDNx)}, V_{I(/STBYx)}=3.3V, V_{I(/CPUEx)}=V_{I(/CPUSBx)}=0V, V_{I(/SYSRST)}=3.3V, V_{I(/SYSRST)}=3$

		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	3.3V _{IN} to 3.3V _{OUT}		C _{L(3.3VOUT)} =0.1µF, I _{O(3.3VOUT)} =0A	0.1		3		
	AUX _{IN} to AUX _{OUT}		C _{L(AUXOUT)} =0.1µF, I _{O(AUXOUT)} =0A	0.1		3		
Output Rise Times	1.5V _{IN} to 1.5V _{OUT}	tr	С _{L(1.5VOUT)} =0.1µF, I _{O(1.5VOUT)} =0А	0.1		3	ms	
	3.3V _{IN} to 3.3V _{OUT}	۲	C _{L(3.3VOUT)} =100µF, R _L =V _{I(3.3VIN)} /1A	0.1		6	1115	
	AUX _{IN} to AUX _{OUT}		$C_{L(AUXOUT)}$ =100µF, R _L =V _{I(AUXIN)} /0.250A	0.1		6		
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}$ =100µF, R _L =V _{I(1.5VIN)} /0.500A	0.1		6		
	3.3V _{IN} to 3.3V _{OUT}		С _{L(3.3VOUT)} =0.1µF, I _{O(3.3VOUT)} =0A	10		150		
	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =0.1µF, I _{O(AUXOUT)} =0A	10		150	μs	
	1.5V _{IN} to 1.5V _{OUT}	t _f	С _{L(1.5VOUT)} =0.1µF, I _{O(1.5VOUT)} =0А	10		150		
(Both CPUSB And	3.3V _{IN} to 3.3V _{OUT}	Lt.	C _{L(3.3VOUT)} =20µF, I _{O(3.3VOUT)} =0A	2		30		
CPPE De-asserted)	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =20µF, I _{O(AUXOUT)} =0A	2		30	ms	
	1.5V _{IN} to 1.5V _{OUT}		C _{L(1.5VOUT)} =20µF, I _{O(1.5VOUT)} =0A	2		30		
	3.3V _{IN} to 3.3V _{OUT}		С _{L(3.3VOUT)} =0.1µF, I _{O(3.3VOUT)} =0A	10		150		
Output Fall Times	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =0.1µF, I _{O(AUXOUT)} =0A	10		150	μs	
When SHDN Asserted	1.5V _{IN} to 1.5V _{OUT}	t _f	С _{L(1.5VOUT)} =0.1µF, I _{O(1.5VOUT)} =0А	10		150		
(Card Is Present)	3.3V _{IN} to 3.3V _{OUT}	Lt.	C _{L(3.3VOUT)} =100µF, R _L =V _{I(3.3VIN)} /1A	0.1		5		
(Calu is Fleselli)	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}$ =100µF, R _L =V _{I(AUXIN)} /0.250A	0.1		5	ms	
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}$ =100µF, R _L =V _{I(1.5VIN)} /0.500A	0.1		5		
	3.3VI _N to 3.3V _{OUT}		С _{L(3.3VOUT)} =0.1µF, I _{O(3.3VOUT)} =0A	0.1		1		
	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =0.1µF, I _{O(AUXOUT)} =0A	0.05		0.5		
Turn-On Propagation	1.5V _{IN} to 1.5V _{OUT}	+	С _{L(1.5VOUT)} =0.1µF, I _{O(1.5VOUT)} =0А	0.1		1	ms	
Delay	3.3V _{IN} to 3.3V _{OUT}	t _{pd(on)}	C _{L(3.3VOUT)} =100µF, R _L =V _{I(3.3VIN)} /1A	0.1		1.5	1115	
	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}$ =100µF, R _L =V _{I(AUXIN)} /0.250A	0.05		1		
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}$ =100µF, R _L =V _{I(1.5VIN)} /0.500A	0.1		1.5		
Turn-Off Propagation	3.3V _{IN} to 3.3V _{OUT}		С _{L(3.3VOUT)} =0.1µF, I _{O(3.3VOUT)} =0A	0.1		1.5		
	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =0.1µF, I _{O(AUXOUT)} =0A	0.05		0.5	- ms	
	1.5V _{IN} to 1.5V _{OUT}	t	C _{L(1.5VOUT)} =0.1µF, I _{O(1.5VOUT)} =0A	0.1		1.5		
	3.3V _{IN} to 3.3V _{OUT}	t _{pd(off)}	C _{L(3.3VOUT)} =100µF, R _L =V _{I(3.3VIN)} /1A	0.1		1.5		
	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}$ =100µF, R _L =V _{I(AUXIN)} /0.250A	0.05		0.5		
	1.5V _{IN} to 1.5V _{OUT}		C _{L(1.5VOUT)} =100µF, R _L =V _{I(1.5VIN)} /0.500A	0.1		1		

Preliminary

FUNCTIONAL TRUTH TABLES

VOLTAGE INPUTS		(Note 1)	LOGIC INPUTS			VOLTAGE OUTPUTS (Note 2)			
AUX _{IN}	3.3V _{IN}	1.5V _{IN}	SHDN	STBY	CP (Note 4)	AUX _{OUT}	3.3V _{OUT}	1.5V _{оит}	MODE (Note 3)
Off	х	х	х	х	х	Off	Off	Off	OFF
On	х	х	0	х	х	GND	GND	GND	Shutdown
On	х	х	1	х	1	GND	GND	GND	No Card
On	On	On	1	0	0	On	Off	Off	Standby
On	On	On	1	1	0	On	On	On	Card Inserted

Table 1. Truth Table for Voltage Outputs

Notes: 1. For input voltages, On means the respective input voltage is higher than its turnon threshold voltage; otherwise, the voltage is Off (for AUX input, Off means the voltage is close to zero volt.)

2. For output voltages, On means the respective power switch is turned on so the input voltage is connected to the output; Off means the power switch and its output discharge FET are both off; GND means the power switch is off but the output discharge FET is on so the voltage on the output is pulled down to 0V.

3. Mode assigns each set of input conditions and respective output voltage results to a different name. These modes are referred to as input conditions in the following Truth Table for Logic Outputs.

	INPUT CONDITIONS	LOGIC OUTPUTS		
MODE	SYSRST	RCLKEN (Note 1)	PERST	RCLKEN (Note 2)
OFF				
Shutdown	v	V	0	0
No Card	^	Х	0	0
Standby				
	0	Hi-Z	0	1
Card Incorted	0	0	0	0
Card Inserted	1	Hi-Z	1	1
	1	0	0	0

Table 2.	Truth	Table for	or Logic	Outputs
----------	-------	-----------	----------	---------

Notes: 1. RCLKEN as a logic input in this column. RCLKEN is an I/O pin and it can be driven low externally, left open, or connected to high-impedance terminals, such as the gate of a MOSFET. It must not be driven high externally.

2. RCLKEN as a logic output in this column.

^{4.} $\overrightarrow{CP} = \overrightarrow{CPUSB}$ and \overrightarrow{CPPE} -equal to 1 when both \overrightarrow{CPUSB} and \overrightarrow{CPPE} signals are logic high, or equal to 0 when either \overrightarrow{CPUSB} or \overrightarrow{CPPE} is low.

POWER STATES

OFF mode

If AUX_{IN} is not present, then all input-to-output power switches are kept off (OFF mode).

Shutdown mode

If AUX_{IN} is present and \overline{SHDN} is asserted (logic low), then all input-to-output power switches are kept off and the output discharge FETs are turned on (Shutdown mode). If \overline{SHDN} is asserted and then de-asserted, the state on the outputs is restored to the state prior to \overline{SHDN} assertion.

No Card mode

If $3.3V_{IN}$, AUX_{IN} and $1.5V_{IN}$ are present at the input of the power switch and no card is inserted, then all input-to-output power switches are kept off and the output discharge FETs are turned on (No Card mode).

Card Inserted mode

If $3.3V_{IN}$, AUX_{IN} and $1.5V_{IN}$ are present at the input of the power switch prior to a card being inserted, then all input-to-output power switches are turned on once a card-present signal (\overline{CPUSB} and/or \overline{CPPE}) is detected (Card Inserted mode).

Standby mode

If a card is present and all output voltages are being applied, then the $\overline{\text{STBY}}$ is asserted (logic low); the AUX_{OUT} voltage is provided to the card, and the 3.3V_{OUT} and 1.5V_{OUT} switches are turned off (Standby mode).

If a card is present and all output voltages are being applied, then the $1.5V_{IN}$, or $3.3V_{IN}$ is removed from the input of the power switch; the AUX_{OUT} voltage is provided to the card and the $3.3V_{OUT}$ and $1.5V_{OUT}$ switches are turned off (Standby mode).

If prior to the insertion of a card, the AUX_{IN} is available at the input of the power switch and $3.3V_{IN}$ and/or $1.5V_{IN}$ are not, or if $\overline{\text{STBY}}$ is asserted (logic low), then no power is made available to the card (OFF mode). If $1.5V_{IN}$ and $3.3V_{IN}$ are made available at the input of the power switch after the card is inserted and $\overline{\text{STBY}}$ is not asserted, all the output voltages are made available to the card (Card Inserted mode).

DISCHARGE FETs

The discharge FETs on the outputs are activated whenever the device detects that a card is not present (No Card mode). Activation occurs after the input-to-output power switches are turned off (break before make). The discharge FETs de-activate if either of the card-present lines go active low, unless the SHDN pin is asserted.

The discharge FETs are also activated whenever the \overline{SHDN} input is asserted and stay asserted until \overline{SHDN} is de-asserted.

APPLICATION INFORMATION

Introduction to ExpressCard[™]

An ExpressCard module is an add-in card with a serial interface based on PCI Express and/or Universal Serial Bus (USB) technologies. An ExpressCard[™] comes in two form factors defined as ExpressCard|34 or ExpressCard|54. The difference, as defined by the name, is the width of the module, 34mm or 54mm, respectively. Host systems supporting the ExpressCard[™] module can support either the ExpressCard|34 or ExpressCard|54 or both.

ExpressCard[™] Power Requirements

Regardless of which ExpressCard[™] module is used, the power requirements as defined in the ExpressCard[™] Standard apply to both on an individual slot basis. The host system is required to supply 3.3V, 1.5V, and AUX to each of the ExpressCard[™] slots. However, the voltage is only applied after an ExpressCard[™] is inserted into the slot.

The ExpressCardTM connector has two pins, \overrightarrow{CPPE} and \overrightarrow{CPUSB} , which are used to signal the host when a card is inserted. If the ExpressCardTM module itself connects the \overrightarrow{CPPE} to ground, the logic low level on that signal indicates to the host that a card supporting PCI Express has been inserted. If \overrightarrow{CPUSB} is connected to ground, then the ExpressCardTM module supports the USB interface. If both PCI Express and USB are supported by the ExpressCardTM module, then both signals, \overrightarrow{CPPE} and \overrightarrow{CPUSB} , must be connected to ground.

In addition to the Card Present signals (\overline{CPPE} and \overline{CPUSB}), the host system determines when to apply power to the ExpressCardTM module based on the state of the system. The state of the system is defined by the state of the 3.3 V, 1.5V, and AUX input voltage rails. For the sake of simplicity, the 3.3V and 1.5V rails are defined as the primary voltage rails as oppose to the auxiliary voltage rail, AUX.

ExpressCard[™] Power Switch Operation

The ExpressCard power switch resides on the host, and its main function is to control when to send power to the ExpressCard[™] slot. The ExpressCard[™] power switch makes decisions based on the Card Present inputs and on the state of the host system as defined by the primary and auxiliary voltage rails.

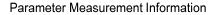
The following conditions define the operation of the host power controller:

1. When both primary power and auxiliary power at the input of the ExpressCardTM power switch are off, then all power to the ExpressCardTM connector is off regardless of whether a card is present.

2. When both primary power and auxiliary power at the input of the ExpressCardTM power switch are on, then power is only applied to the ExpressCardTM after the ExpressCardTM power switch detects that a card is present.

3. When primary power (either +3.3V or +1.5V) at the input of the ExpressCardTM power switch is off and auxiliary power at the input of the ExpressCardTM power switch is on, then the ExpressCardTM power switch behaves in the following manner:

(a) If neither of the Card Present inputs is detected (no card inserted), then no power is applied to the ExpressCardTM slot.


(b) If the card is inserted after the system has entered this power state, then no power is applied to the ExpressCardTM slot.

(c) If the card is inserted prior to the removal of the primary power (either +3.3V or +1.5V or both) at the input of the ExpressCard[™] power switch, then only the primary power (both +3.3V and +1.5V) is removed and the auxiliary power is sent to the ExpressCard[™] slot.

Figure 2 through Figure 7 illustrate the timing relationships between power/logic inputs and outputs of ExpressCardTM.

TEST CIRCUITS AND VOLTAGE WAVEFORMS

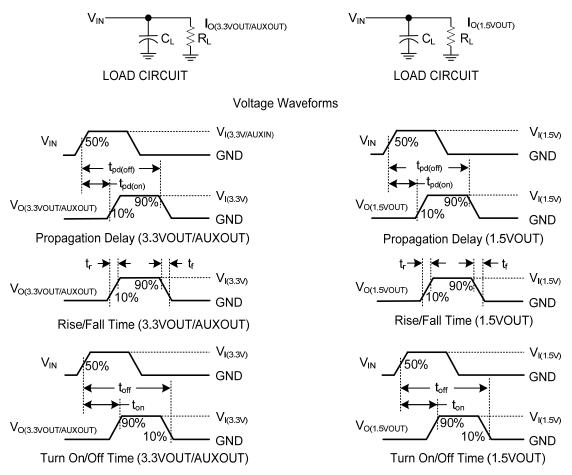


Figure 1. Test Circuits and Voltage Waveforms

Preliminary

EXPRESS CARD TIMING DIAGRAMS

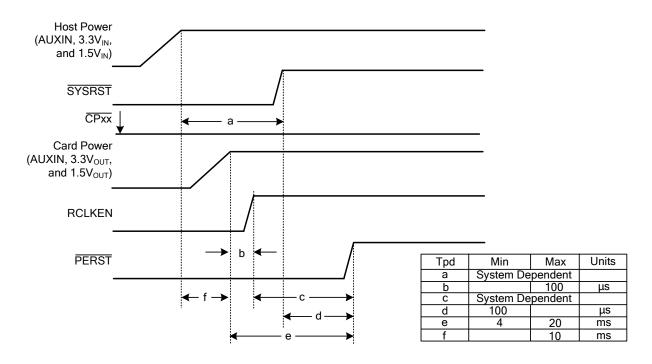


Figure 2. Timing Signals - Card Present Before Host Power Is On

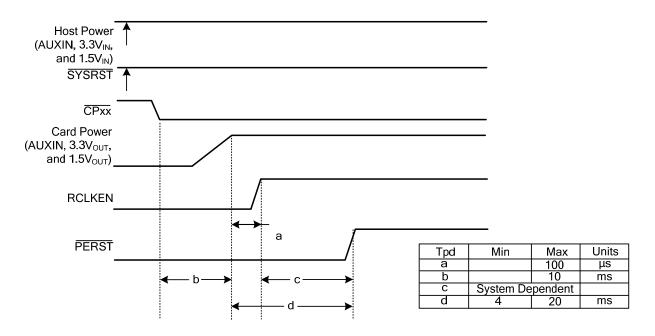



Figure 3. Timing Signals - Host Power Is On Prior Card Insertion

EXPRESS CARD TIMING DIAGRAMS(Cont.)

Note: Once 3.3V and 1.5V are applied, the power switch follows the power-up sequence of Figure 2 or Figure 3.

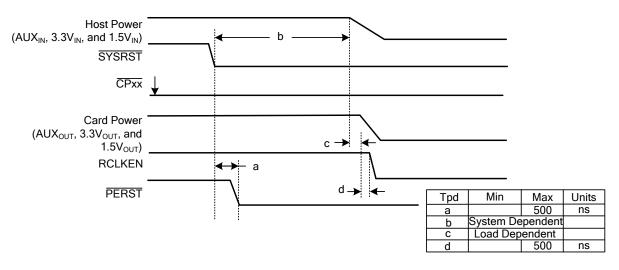


Figure 4. Timing Signals - Host System In Standby Prior to Card Insertion

Figure 5. Timing Signals - Host - Controlled Power Down

EXPRESS CARD TIMING DIAGRAMS(Cont.)

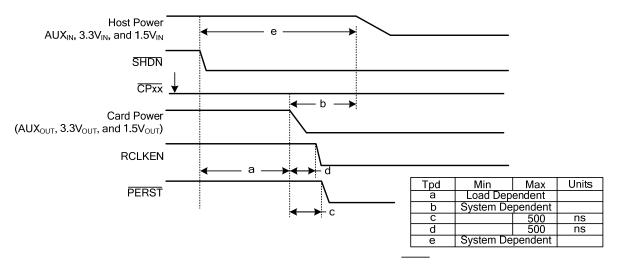


Figure 6. Timing Signals - Controlled Power Down When SHDN Asserted

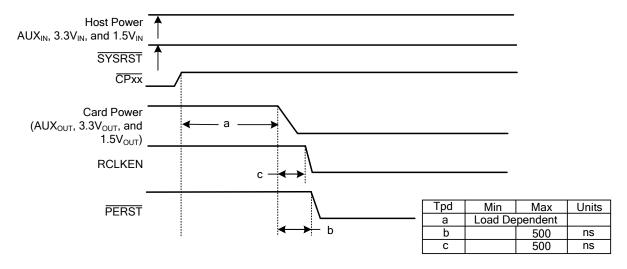
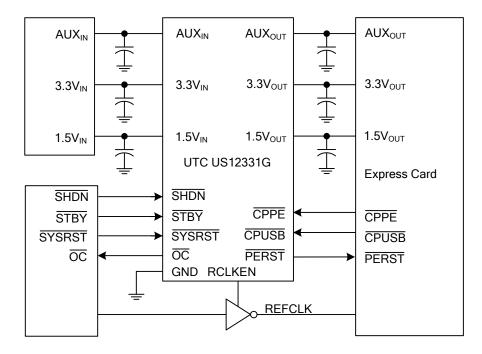



Figure 7. Timing Signals - Surprise Card Removal

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

