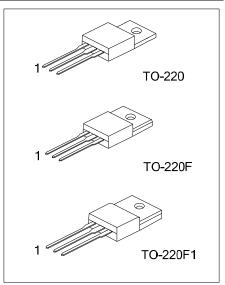
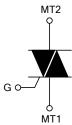


UNISONIC TECHNOLOGIES CO., LTD

SM2LZ47 **Preliminary TRIAC**

2A TRIACS

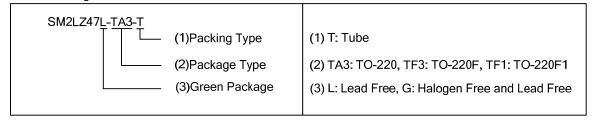

DESCRIPTION

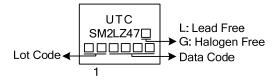

The UTC SM2LZ47 is a 2A Triac, it uses UTC's advanced technology to provide customers with high critical rate of rise of off-state voltage at communication, high repetitive peak off-state voltage and high R.M.S. on-state current, etc.

The UTC SM2LZ47 is suitable for AC power control applications, etc.

- * High R.M.S. On-State Current: 2A
- * High Critical Rate of Rise of Off-State Voltage at Communication(Min.=5V/µs)

FEATURES * High Repetitive Peak Off-State Voltage: 800V **SYMBOL**




ORDERING INFORMATION

Order Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
SM2LZ47L-TA3T	SM2LZ47G-TA3-T	TO-220	MT1	MT2	G	Tube	
SM2LZ47L-TF1-T	SM2LZ47G-TF1-T	TO-220F1	MT1	MT2	G	Tube	
SM2LZ47L-TF3-T	SM2LZ47G-TF3-T	TO-220F	MT1	MT2	G	Tube	

Note: Pin Assignment: MT1: MT1 MT2: MT2 G: GATE

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Repetitive Peak Off-State Voltages		V_{DRM}	800	V
R. M. S On-State Current (Full Sine Waveform)		I _{T(RMS)}	2	Α
Non Repetitive Peak One Cycle Surge	50Hz		8	Α
On-State Current	60Hz	I _{TSM}	8.8	Α
I ² t Limit Value		l ² t	0.32	A ² s
Critical Rate of Rise of On-State Current (Note 1)		dI/dt	50	A/µs
Peak Gate Power Dissipation		P_GM	3	W
Average Gate Power Dissipation		$P_{G(AV)}$	0.3	W
Peak Gate Voltage		V_{FGM}	10	V
Peak Gate Current		I _{GM}	1.6	Α
Isolation Voltage (AC, t=1min.)		V_{ISOL}	1500	V
Junction Temperature		T_J	-40~125	°C
Storage Temperature		T _{STG}	-40~125	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (AC)	θ_{JA}	58	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Repetitive Peak Off-State Current	I _{DRM}	V _{DRM} =800V				20	μA
Gate Trigger Voltage	V _{GT}	V_D =12V, R_L =20 Ω	T2+ G+			1.5	V
			T2+ G-			1.5	
			T2- G-			1.5	
Gate Trigger Current	I _{GT}	V_D =12V, R_L =20 Ω	T2+ G+			10	mA
			T2+ G-			10	
			T2- G-			10	
Peak On-State Voltage	V_{TM}	I _{TM} =3A				2.0	V
Gate Non-Trigger Voltage	V_{GD}	V _D =800V, T _C =125°C		0.2			V
Holding Current	I _H	V _D =12V, I _{TM} =1A				10	mA
Critical Rate of Rise of Off-State	dV/dt	V _{DRM} =800V, T _J =125°C, Exponential Rise			500		V/µs
Voltage	άν/αι				500		
Critical Rate of Rise of Off-State	(dV/dt)c	V _{DRM} =400V, T _J =125°C, (dl/dt)c=-0.5A/ms		5			V/µs
Voltage at Communication	(uv/ut)c			3			

^{2.} dl/dt test condition ; V_{DRM} = 400V, $I_{TM} \le 3A$, $t_{gw} \ge 0\mu s$, $t_{gr} \le 250ns$, $i_{gp} = I_{GT} \times 2.0$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

