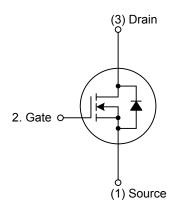


UNISONIC TECHNOLOGIES CO., LTD

UT3400 Power MOSFET

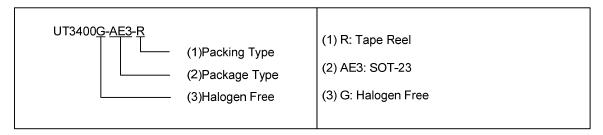
N-CHANNEL ENHANCEMENT MODE POWER MOSFET

DESCRIPTION

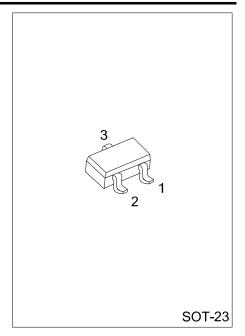

The UTC **UT3400** is an N-ch enhancement MOSFET providing the customers with perfect $R_{DS(ON)}$ and low gate charge. This device can be operated with 2.5V low gate voltage.

The UTC ${\bf UT3400}$ is optimized for applications, such as a load switch or in PWM.

■ FEATURES


- * V_{DS} (V)=30V
- * I_D=5.8 A
- * $R_{DS(ON)}$ < $28m\Omega$ @ V_{GS} = 10V $R_{DS(ON)}$ < $33m\Omega$ @ V_{GS} = 4.5V $R_{DS(ON)}$ < $52m\Omega$ @ V_{GS} = 2.5V
- * Halogen Free

■ SYMBOL


ORDERING INFORMATION

	Ordering Number	Dookogo	Pin Assignment			Dooking	
	Ordering Number	Package	1	2	3	Packing	
ſ	UT3400G-AE3-R	SOT-23	S	G	D	Tape Reel	

MARKING

<u>www.unisonic.com.tw</u> 1 of 3

UT3400 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (Ta=25°C, unless otherwise specified)

PARAMETER	METER SYMBOL RATINGS		UNIT
TAIVAIVILTEIX	STIVIDOL	IVATINGS	OINIT
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±12	V
Continuous Drain Current	I _D	5.8	Α
Pulsed Drain Current (Note 2)	I _{DM}	30	Α
Power Dissipation	P _D	1.4	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

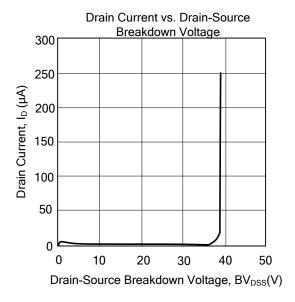
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

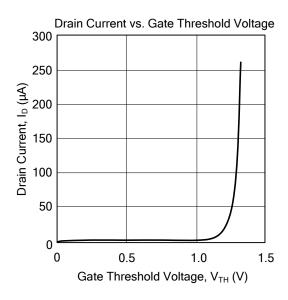
- 2 Pulse width limited by T_{J(MAX)}
- 3. Pulse width ≤300µs, duty cycle≤0.5%.

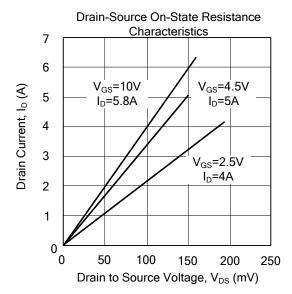
■ THERMAL DATA

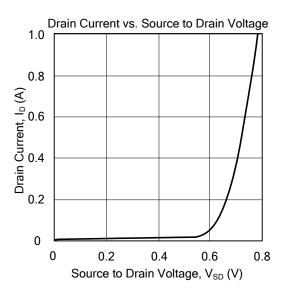
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient (Note)	θ_{JA}		85	125	°C/W

Note: Surface mounted on 1 in² copper pad of FR4 board with 2oz


■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	30			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =24V,V _{GS} =0V			1	μA		
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 12V, V_{DS} = 0V$			100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.7	1.1	1.4	V		
On-State Drain Current	$V_{GS(TH)}$ $I_{D(ON)}$	V _{DS} =5V, V _{GS} =4.5V	30			Α		
	R _{DS(ON)}	V _{GS} =10V, I _D =5.8A		22.8	28	mΩ		
Drain to Source On-state Resistance		$V_{GS} = 4.5 V, I_D = 5 A$		27.3	33	mΩ		
		V _{GS} =2.5V, I _D =4 A		43.3	52	mΩ		
DYNAMIC PARAMETERS								
Input Capacitance	C _{ISS}			823		pF		
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, f =1MHz		99		рF		
Reverse Transfer Capacitance	C _{RSS}] [77		pF		
Gate Resistance	R _G	$V_{GS} = 0V$, $V_{DS} = 0V$, $f = 1MHz$		1.2		Ω		
SWITCHING PARAMETERS								
Turn-ON Delay Time	$t_{D(ON)}$			5.5		ns		
Turn-ON Rise Time	t_R	V _{GS} =10V, V _{DS} =15V		5.1		ns		
Turn-OFF Delay Time	t _{D(OFF)}	$R_L = 2.7\Omega, R_{GEN} = 6\Omega$		37		ns		
Turn-OFF Fall-Time	t _F			4.2		ns		
Total Gate Charge	Q_{G}			9.7		nC		
Gate Source Charge	Q_GS	$V_{GS} = 4.5V, V_{DS} = 15V, I_D = 5.8A$		1.6		nC		
Gate Drain Charge	Q_GD			3.1		nC		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Drain-Source Diode Forward Voltage	V_{SD}	I _S =1A, V _{GS} =0V		0.71	1	V		
Diode Continuous Forward Current (Note 1)	Is				2.5	Α		
Reverse Recovery Time	t _{RR}	1 = F A d1/d+=100 A/u.o		16		ns		
Reverse Recovery Charge	Q_{RR}	I _F =5A, dI/dt=100A/μs		8.9		nC		


Notes: 1. Pulse width limited by $T_{J(MAX)}$


2. Pulse width ≤300µs, duty cycle≤0.5%.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.