
UTC UNISONIC TECHNOLOGIES CO., LTD

UT3243

+3.0V TO +5.5V POWER SUPPLY, 235KBPS, **MULTICHANNAEL RS-232 LINE** DRIVERS/RECEIVERS

DESCRIPTION

The UTC UT3243 consists of 3 drivers and 5 receivers. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.0V ~ +5.5V power supply. A guaranteed data rate of 120kbps provides compatibility with popular software for communicating with PCs.

The UTC UT3243 achieves 1µA supply current in shutdown condition. When the UT3243 doesn't detect a valid signal level on its receiver inputs, the on-board power supply and drivers will shutdown, and when a valid level is applied to any RS-232 receiver input, then the system turns on again. Therefore, the system saves power without changes to the existing BIOS or operating system.

The UTC UT3243 requires only 0.1µF capacitors in 3.3V operation, and can operate from input voltages ranging from +3.0V ~ +5.5V. It is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

The UTC UT3243 includes one complementary always-active receiver that can monitor an external device (such as a modem) in shutdown, without forward biasing the protection diodes in a UART that may have V_{CC} completely removed.

FEATURES

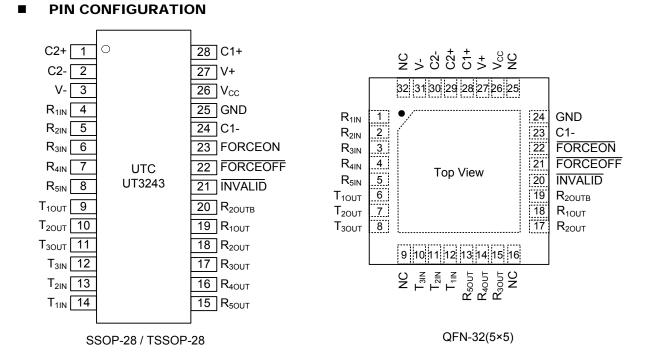
- * Operates With 3.0V ~ 5.5V Power Supply
- * Three Drivers and Five Receivers
- * Operates Up To 235 kbps
- * Designed to Transmit at a Data Rate of 235 kbps
- * Low Standby Current (1uA Typical)

- * External Capacitors (4×0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- * Always-Active Non-inverting Receiver Output (R_{2OUTB})
- * Serial-Mouse Drivability
- * ESD(HBM) Protected ±8KV(MIN.) for RS-232 Pins

ORDERING INFORMATION

Orderii	ng Number	Daakaaa	Deaking
Lead Free	Halogen Free	Package	Packing
UT3243L-P28-R	UT3243G-P28-R	TSSOP-28	Tape Reel
-	UT3243G-R28-R	SSOP-28	Tape Reel
-	UT3243G-Q32-5050-R	QFN-32(5×5)	Tape Reel

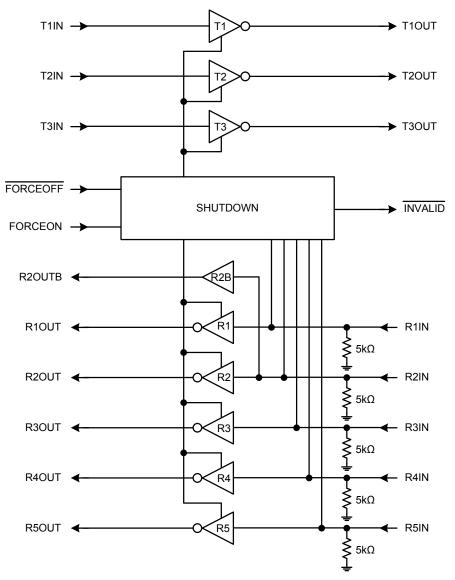
UT3243L-P28-R (1)Packing Type (2)Package Type (3)Green Package	 (1) R: Tape Reel (2) P28: TSSOP-28, R28: SSOP-28 Q32-5050: QFN-32(5×5) (3) L: Lead Free, G: Halogen Free and Lead Free
---	---


CMOS IC

UT3243

MARKING

TSSOP-16	QFN-32(5×5)
23 23 <t< td=""><td>UTC UT3243 Lot Code ← Date Code</td></t<>	UTC UT3243 Lot Code ← Date Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14	



PIN DESCRIPTION

PIN	I NO.		
SSOP-28 TSSOP-28	QFN-32(5×5)	PIN NAME	DESCRIPTION
1	29	C2+	Positive terminal of inverting charge-pump capacitor
2	30	C2-	Negative terminal of inverting charge-pump capacitor
3	31	V-	-5.5V generated by the charge pump
4~8	1~5	R _{XIN}	RS-232 Receiver Inputs
9~11	6~8	T _{XOUT}	RS-232 Transmitter Outputs
12~14	10~12	T _{XIN}	TTL/CMOS Transmitter Inputs
15~19	13~15, 7~18	R _{XOUT}	TTL/CMOS Receiver Outputs
20	17	R _{2OUTB}	Noninverting Receiver Output—active in shutdown
21	20	INVALID	Output of the valid signal detector. Indicates if a valid RS-232 level is present on receiver inputs logic "1".
22	21	FORCEOFF	Drive low to shut down transmitters and on-board power supply. This over-rides all automatic circuitry and FORCEON (Table 1).
23	22	FORCEON	Drive high to override automatic circuitry keeping transmitters on (FORCEOFF must be high) (Table 1).
24	23	C1-	Negative terminal of the voltage doubler charge-pump capacitor
25	24	GND	Ground
26	26	V _{CC}	+3.0V ~ +5.5V Supply Voltage
27	27	V+	+5.5V generated by the charge pump
28	28	C1+	Positive terminal of the voltage doubler charge-pump capacitor
-	9, 16, 25, 32	NC	No Connect

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARA	SYMBOL	RATINGS	UNIT	
V _{cc}		V _{cc}	-0.3 ~ +6	V
V+ (Note 2)		V+	-0.3 ~ +7	V
V- (Note 2)		V-	+0.3 ~ -7	V
V+ + V- (Note 2)		V _{PUMP}	+13	V
	T_IN, FORCEOFF, FORCEON	Ň	-0.3 ~ +6	V
Input Voltages	R_IN	V _{IN}	±25	V
	T_OUT		±13.2	V
Output Voltages	R_OUT, INVALID	V _{OUT}	-0.3 ~ (V _{CC} +0.3)	V
Short-Circuit Duration	T_OUT	SC	Continuous	
SSOP-28/TSSOP-28		D	696	mW
Power Dissipation ($T_A = 70^{\circ}C$)	QFN-32(5×5)	PD	1300	mW
Operating Temperature	T _{OPR}	-40 ~ +85	°C	
Storage Temperature	T _{STG}	-65 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.0V~+5.5V, C1~C4=0.1 μ F (Note 1, 2), T_A = T_{MIN} to T_{MAX}, unless otherwise specified)

PARAMETEI	R	SYMBOL		TEST C	ONDITIC	DNS	MIN	TYP	MAX	UNIT
DC CHARACTERISTI	DC CHARACTERISTICS									
Supply Current, Shutdown		I _{SHDN}	V _{CC} = 3.3V	_	All R_IN open, FORCEOFF =V _{CC} , FORCEON = GND			1.0	10	μA
			or 5.0V,	FORCEO	FF = GNI	C		1.0	10	μA
Supply Current, Shutdown Disabled		Icc	T _A = 25°C	FORCE no load	FORCEON = $\overline{FORCEOFF}$ = V_{CC} , no load			0.3	1	mA
LOGIC INPUTS AND	RECEIVER		5							
	Low	V_{LGL}	T_IN, FOR	CEON,	FORCEOF	F			0.8	V
Input Logic Threshold	Lline	M	T_IN, EN,	FORCE	DN,	V _{CC} = 3.3V	2.0			v
	High	V_{LGH}	FORCEOFF $V_{CC} = 5.0V$		2.4			V		
Input Leakage Current	t	I _{IN(LK)}	T_IN, EN, FORCEON, FORCEOFF			±0.01	±1.0	μA		
Output Leakage Curre	ent	I _{ROUT(LK)}	Receivers disabled			±0.05	±10	μA		
Output Voltage	Low	V _{ROUTL}	I _{OUT} = 1.6m	۱A					0.4	V
	High	VROUTH	I _{OUT} = -1.0r	mA			V _{CC} - 0.6	V _{CC} - 0.1		V
SHUTDOWN (FORCE	ON = GND), FORCEOF	= V _{CC})							-
Receiver Input	Enabled	V	Fig.1		Positive	threshold			2.7	V
Thresholds to	LIIADIEU	V _{R(EN)}	Fig. i		Negative	e threshold	-2.7			
Transmitters	Disabled	V _{R(DIS)}	1µA supply current, Fig.1		-0.3		0.3	V		
	Low	VINVL	I _{OUT} = 1.6mA				0.4	V		
Voltage	High	VINVH	I _{OUT} = -1.0mA		V _{CC} - 0.6			V		
Receiver Threshold to Transmitters Enabled	1	t _{wu}	Fig.2					250		μs

■ ELECTRICAL CHARACTERISTICS(Cont.)

(V_{CC} = +3.0V~+5.5V, C1~C4=0.1 μ F (Note 1, 2), T_A = T_{MIN} to T_{MAX}, Unless Otherwise Specified)

-04=0. TµF	(NOLE I, Z	$\underline{)}, \underline{1}_{A} - \underline{1}_{MIN}$ to $\underline{1}_{MAX}$, othess	Otherwise Spec	meu)			
	SYMBOL	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
High	t _{INVH}				80		μs
Low	4	Fig.2			20		-
LOW	ι _{NVL}				30		μs
	1	1			1	1	
	V _{RR}		1			25	V
	VRINI	T₄ = 25°C					v
			1	0.8			_
		T₄ = 25°C			-		v
			$V_{CC}=5.0V$		1.8	2.4	
					0.3		V
	V _{RINRES}	T _A = 25°C		3	5	8	kΩ
rs							
	V _{TOUTSW}	All transmitter outputs loaded with $^{\prime}$ 3k Ω to ground		±4.8	±5.4		V
	V _{TOUTRES}	$V_{\rm CC} = V + = V - = 0V,$		300	10M		Ω
Output Short-Circuit Current					±35	±60	mA
		V _{OUT} =±12V, Transmitters disabled				±25	μA
		$T_{1IN} = T_{2IN} = GND, T_{3IN} = V$	CC,				
ge			±4.8			V	
-							
TICS		·				•	
	DR	$R_L = 3k\Omega$, $C_L = 1000pF$,		120	235		kbps
	tou				03		
Receiver Propagation Delay							μs
Receiver Output Time Enable							ns
		Normal operation					ns
DISUDIC		ltou – toul				1000	ns
							ns
	440	$V_{cc}=3.3V$ T _A =25°C				000	110
Rate	SR		200pF~2500pF	4	8.0	30	V/µs
Transition-Region Slew Rate		measured from +3V ~ -3V or -3V ~ +3V $C_L = 1$	200pF~1000pF	6		30	
	High Low TS ent ge TICS elay Enable Disable	SYMBOL High tinvh Low tinvl VRR VRINU VRINH VRINH VRINH VRINH VRINHS VRINHS VRINHS VRINHS VRINHS VRINHS VIOUTSW VTOUTRES ITS VTOUTRES Particle ITCUT(LK) Ope VTOUT TICS DR Particle tPHL Itable tR(EN) Disable tR(EN) Itable tR(S)	SYMBOLTEST CONDITIHightinvhFig.2LowtinvlFig.2 V_{RR} V_{RINL} $T_A = 25^{\circ}C$ V_{RINH} $T_A = 25^{\circ}C$ V_{RINHYS} V_{RINHYS} V_{RINRES} $T_A = 25^{\circ}C$ V_{RINHYS} $V_{CC} = V + = V - 0V$, Transmitter outputs load $3k\Omega$ to ground V_{TOUTSW} All transmitter outputs load $3k\Omega$ to ground $V_{TOUTRES}$ $V_{CC} = V + = V - 0V$, Transmitter output = $\pm 2V$ entITSCITOUT(LK) $V_{OUT} = \pm 12V$, Transmitters of Taour loaded with $3k\Omega$ to C T_{10UT} and T_{20UT} loaded with $TICS$ ge V_{TOUT} $T_{1IN} = T_{2IN} = GND, T_{3IN} = V$ T_{30UT} loaded with $3k\Omega$ to C T_{10UT} and T_{20UT} loaded with $3k\Omega C to C$ ge V_{TOUT} $T_{1IN} = T_{2IN} = GND, T_{3IN} = V$ T_{30UT} loaded with $3k\Omega$ to C T_{10UT} and T_{20UT} loaded with $TICS$ ge V_{TOUT} $T_{1IN} = T_{2IN} = GND, T_{3IN} = V$ T_{30UT} loaded with $3k\Omega$ to C T_{10UT} and T_{20UT} loaded with T_{20UT} loaded with T_{10UT} and T_{20UT} loaded with T_{10UT} and T_{20UT} loaded with T_{10UT} and T_{20UT} loaded with T_{10UT} and T_{20UT} loaded with T_{10UT} Hendle $t_{R(EN)}$ t_{PLH} Normal operationHendle $t_{R(EN)}$ $T_{L} = 3k\Omega ~ 7k\Omega,$ measured from $+3V$ $C_L =$	SYMBOLTEST CONDITIONSHigh t_{INVH} Fig.2Low t_{INVL} Fig.2VRR V_{RR} $V_{CC}=3.3V$ V_{RINL} $T_A = 25^{\circ}C$ $V_{CC}=3.3V$ V_{RINH} $T_A = 25^{\circ}C$ $V_{CC}=3.3V$ V_{RINH} $T_A = 25^{\circ}C$ $V_{CC}=3.3V$ V_{RINHS} $V_{ACC}=5.0V$ V_{RINRES} $T_A = 25^{\circ}C$ TSAll transmitter outputs loaded with $3k\Omega$ to ground V_{TOUTSW} All transmitter output = $\pm 2V$ entIrsc $V_{TOUTRES}$ $V_{CC} = V + = V - = 0V$, Transmitter output = $\pm 2V$ entIrsc V_{TOUT} $V_{OUT}=\pm12V$, Transmitters disabledge V_{TOUT} $T_{1IN} = T_{2IN} = GND, T_{3IN} = V_{CC}, T_{3OUT}$ loaded with $3k\Omega$ to GND, T_{1OUT} and T_{2OUT} loaded with $2.5mA$ eachTICS DR $R_L = 3k\Omega, C_L = 1000pF, one transmitter switchingelayt_{PHL}Receiver input to receiver output, C_L = 150pFEnablet_{R(DIS)}Normal operationDisablet_{R(DIS)}Normal operationt_{RS} t_{PHL} - t_{PLH} ReateSRV_{CC}=3.3V, T_A=25^{\circ}C, R_L = 3k\Omega ~ 7k\Omega, measured from +3VC_L = 200pF\sim2500pF$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOLTEST CONDITIONSMINTYPHigh t_{INVH} Fig.280Low t_{INVL} Fig.230V _{RR} V_{RINL} $T_A = 25^{\circ}$ C $V_{CC}=3.3V$ 0.6 V_{RINH} $T_A = 25^{\circ}$ C $V_{CC}=3.3V$ 1.5 V_{RINHYS} $V_{CC}=3.3V$ 1.5 V_{RINRES} $T_A = 25^{\circ}$ C $V_{CC}=3.3V$ 1.5 V_{RINRES} $T_A = 25^{\circ}$ C35TSTA = 25^{\circ}C35TSVroutswAll transmitter outputs loaded with $3k\Omega$ to ground ± 4.8 ± 5.4 $V_{TOUTRWS}$ All transmitter output = $\pm 2V$ 30010MentIrscTransmitter output = $\pm 2V$ 300Invoir output = $\pm 2V$ ± 4.8 Invoir output = $\pm 2V$ ± 4.8 Invoir output = $\pm 2V$ ± 35 Invoir output = $\pm 2V$ ± 35 Invoir output = $\pm 2V$ ± 35 Invoir output = $\pm 2V$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes: 1. Typical values are at V_{CC}=3.3V or V_{CC}=5.0V, and T_A = 25°C.

2. C1~C4 = 0.1μ F, measured at 3.0V~3.6V. C1 = 0.047μ F, C2~C4 = 0.33μ F, measured at 4.5V~5.5V.

DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC **UT3243** consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.0V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitters

UTC **UT3243**'s transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 120kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software. Typically, the UTC **UT3243** can operate at data rates of 235kbps.

Transmitters can be paralleled to drive multiple receivers or mouse. When FORCEOFF is driven to ground, or shutdown circuitry senses invalid voltage levels at all receiver inputs, the transmitters are disabled and the outputs are forced into a high-impedance state.

RS-232 Receivers

The UTC **UT3243**'s receivers convert RS-232 signals to CMOS-logic output levels. All receivers have one inverting three-state output. If the receivers are in shutdown, the outputs of receivers are high impedance.

The UTC **UT3243** has an always-active complementary output (R_{2OUTB}). R_{2OUTB} is an extra output that monitors receiver activity while the other receivers are high impedance. This allows Ring Indicator to be monitored without forward biasing other devices connected to the receiver outputs. This is ideal for systems where V_{CC} is set to 0V in shutdown to accommodate peripherals.

FORCEOFF	T_OUT	R_OUT	R2OUTB
0	High-Z	High-Z	Active
1	Active (Note 3)	Active (Note 3)	Active

 Table 1.
 FORCEOFF
 Control Truth Table

Note: 3. If the part is in shutdown mode ($\overline{FORCEOFF} = V_{CC}$, FORCEON = GND), it is shutdown if no valid RS-232 levels are present on all receiver inputs.

Shutdown Function

A 1µA supply current is achieved with shutdown feature, which operates when FORCEON is low and FORCEOFF is high. When the UTC **UT3243** senses no valid signal levels on all receiver inputs for 30µs, the on-board power supply and drivers are shut off, reducing supply current to 1µA. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters are turned off. The system turns on again when a valid level is applied to any RS-232 receiver input. As a result, the system saves power without changes to the existing BIOS or operating system. INVALID indicates the receiver inputs' condition, when using shutdown function, the INVALID output is high when the device is on and low when the device is shut down.

Table 2. Shutdown Logic Control Truth Table

RS-232 SIGNAL AT	FORCEOFF	FORCEON	INVALID	TRANSCEIVER STATUS
RECEIVER INPUT	INPUT	INPUT	OUTPUT	TRANSCEIVER STATUS
Yes	Н	Х	Н	Normal Operation
No	Н	Н	L	Normal Operation (Forced On)
No	Н	L	L	Shutdown
Yes	L	Х	Н	Shutdown (Forced Off)
No	L	Х	L	Shutdown (Forced Off)

DETAILED DESCRIPTION(Cont.)

Table 2 summarizes the UTC **UT3243** operating modes. FORCEON and FORCEOFF override the automatic circuitry and force the transceiver into its normal operating state or into its low-power standby state. When neither control is asserted, the IC selects between these states automatically based on receiver input levels.

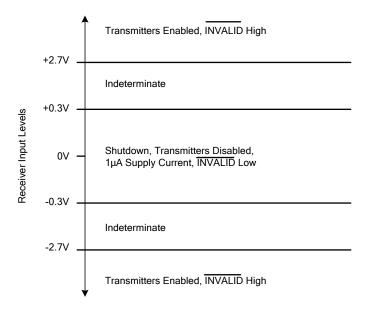
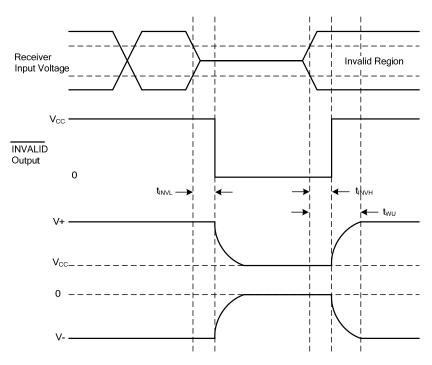
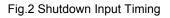
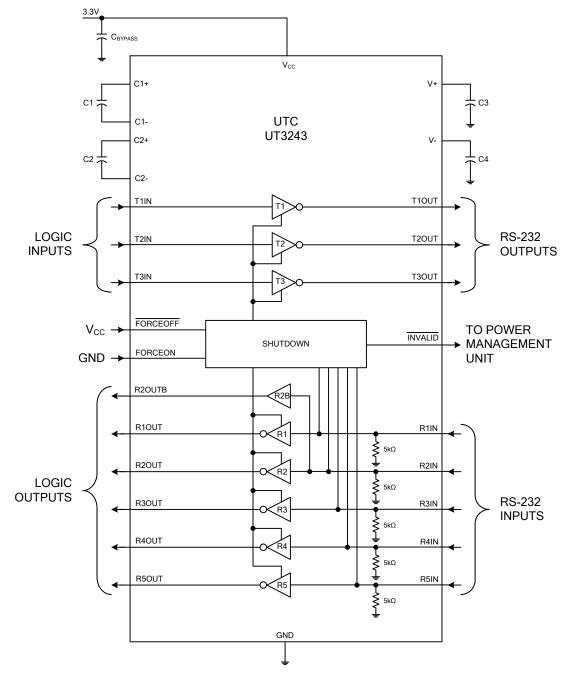
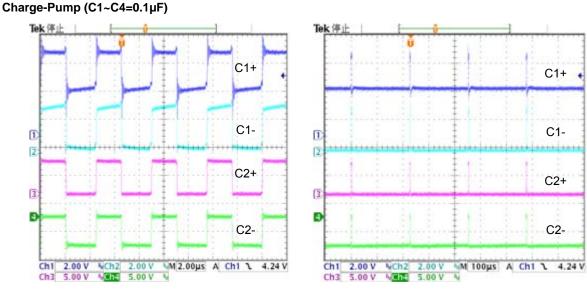




Fig.1 Shutdown Input Levels

When shutdown, the UTC **UT3243**'s charge pumps are turned off, V+ decays to V_{CC} , V- decays to ground, the transmitter outputs are disabled (high impedance). The time required to exit shutdown is typically 100 μ s.

TYPICAL APPLICATION CIRCUIT




Fig.3 Application Circuit

		~	
Lable 3	Required	Capacitor	Value

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0 ~ 3.6	0.1	0.1	0.22
4.5 ~ 5.5	0.047	0.33	0.1
3.0 ~ 5.5	0.1	0.47	0.22

TYPICAL CHARACTERISTICS

V_{CC}=3V, OUT=3KΩ

 V_{CC} =3V, No Load

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

