

SPECIFICATION

(ISO9001:2008)

| PRODUCT :   | LCM                     |
|-------------|-------------------------|
| MODEL NO. : | HGO1286410T-F-LWH-LSV-U |
| SUPPLIER :  | TSINGTEK DISPLAY CO.LTD |
| REVISION :  | В                       |

www.china-lcdmodules.com E-mail:sales@tsingtek.com REV . B

| Rev NO. | Rev Date     | CONTENS        | REMARKS |
|---------|--------------|----------------|---------|
| А       | Apr. 1,2011  | First Release  |         |
| В       | Mar. 12,2012 | RoHS Compliant |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |
|         |              |                |         |

### PRODUCT CODING SYSTEM

- HGO 128 64 10 T-F- LW H- LSV- U
- (1) (2) (3) (4) (5) (6) (7) (8)
  - (1): Brand and Display Type
    - HGO→Tsingtek COG Type
  - (2): Graphic  $\rightarrow$  row dots  $\times$  column dots
  - (3): Series No.
  - (4): Display Mode
    - T- F→FSTN Transmissive
  - (5): Backlight Type
    - LW→LED White
  - (6): Temperature
    - H→Wide Temperature
  - (7): Power Supply
    - LSV→3.3V With Temperature Compensation
  - (8): Viewing Direction

U→12:00

# CONTENTS

| 1. BASIC SPECIFICATIONS              | (2)  |
|--------------------------------------|------|
| 2. ABSOLUTE MAXIMUM RATING           | (4)  |
| 3. ELECTRICAL CHARACTERISTICS        | (4)  |
| 4. TIMING CHARACTERISTICS            | (5)  |
| 5. COMMANDS                          | (6)  |
| 6. QUALITY SPECIFICATIONS            | (11) |
| 7. RELIABILITY                       | (12) |
| 8. TEST REPORT                       | (13) |
| 9. PRECAUTIONS FOR USING LCD MODULES | (13) |
| 10. PRECAUTIONS FOR CUSTOMER         | (15) |

# 1. BASIC SPECIFICATION

## **1.1 DISPLAY SPECIFICATION**

| ITEM                  | SPECIFICATION                                     |
|-----------------------|---------------------------------------------------|
| DISPLAY TYPE          | FSTN/ POSITIVE/TRANSMISSIVE                       |
| COLOR                 | DISPLAY DOT: BLACK                                |
| COLOR                 | DISPLAY BACKGROUNTND:WHITE                        |
| INPUT DATA            | 68 PARALLEL                                       |
| DUTY                  | 1/65DUTY                                          |
| VIEW ANGLE            | 12 O'CLOCK                                        |
| CONTROLLER            | UC1701                                            |
| BEZEL                 | 0.6T                                              |
| BACKLIGHT             | LED(WHITE)                                        |
| OPERATING TEMPERATURE | -20 °C ~70 °C                                     |
| STORAGE TEMPERATURE   | $-30 {}^{\rm o}{\rm C} \sim 80 {}^{\rm o}{\rm C}$ |
| OTHERS                |                                                   |

## 1.2 MECHANICAL SPECIFICATION

| ITEM                | SPECIFICATION               | UNIT | NOTE |
|---------------------|-----------------------------|------|------|
| DIMENSIONAL OUTLINE | 93.0(W)×70.0(H)×13.0MAX.(T) | mm   |      |
| VIEW AREA           | 72.0(W)×40.0(H)             | mm   |      |
| EFFECTIVE V/AREA    | 66.52(W)×33.24(H)           | mm   |      |
| NUMBER OF DOTS      | 128Dots×64Dots              |      |      |
| DOT PITCH           | 0.52(W)×0.52(H)             | mm   |      |
| DOT SIZE            | 0.48(W)×0.48(H)             | mm   |      |

## 1.3 BLOCK DIAGRAM



## 1.4 DIMENSIONAL OUTLINE



# **1.5 TERMINAL FUNCTIONS**

| PIN NO. | SYMBOL  | LEVEL | FUNCTION                       |
|---------|---------|-------|--------------------------------|
| 1       | Vss     | 0V    | GND                            |
| 2       | VDD     | +3.3V | Power Supply for logic         |
| 3       | NC      | -     | No connection                  |
| 4       | A0      | H/L   | H: Data L: Instruction code    |
| 5       | R/W     | H/L   | H: Read signal L: Write signal |
| 6       | Е       | H/L   | Chip enable signal             |
| 7~14    | DB0-DB7 | H/L   | Data bus line                  |
| 15      | /CS     | L     | Chip select signal             |
| 16      | NC      | -     | No connection                  |
| 17      | /REST   | L     | Reset signal, active "L"       |
| 18      | NC      | -     | No connection                  |
| 19      | LEDA    | +3.3V | Power Supply for LED backlight |
| 20      | LEDK    | 0V    | Fower Suppry for LED backlight |

www.china-lcdmodules.com

## 1.6 CONTRAST ADJUST METHOD

This model's contrast adjustment method is by internal instructions. The details please refer to the instruction table.

## 2. ABSOLUTE MAXIMUM RATINGS

(Ta=25 °C, Vss=0V)

| PARAMETER                   | SYMBOL  | RATINGS         | UNITS |
|-----------------------------|---------|-----------------|-------|
| POWER SUPPLY FOR LOGIC      | VDD-VSS | $-0.3 \sim 7.0$ | V     |
| POWER SUPPLY FOR LCD DRIVER | V0-VSS  | -0.3 ~ 15.0     | V     |
| INPUT VOLTAGE               | Vin     | $Vss \sim Vdd$  | V     |
| OPERATING TEMPERATURE       | Topr    | -20 ~70         | °C    |
| STORAGE TEMPERATURE         | Tstg    | $-30 \sim 80$   | °C    |

## 3. ELECTRICAL & OPTICAL CHARACTERISTICS

## 3.1 ELECTRICAL CHARACTERISTICS

(Ta=25 °C, Vss=0V)

| ITEM                                     | SYMBOL              | CONDITION         | MIN     | ТҮРЕ | MAX.    | UNIT | NOTE |
|------------------------------------------|---------------------|-------------------|---------|------|---------|------|------|
| LOGIC CIRCUIT<br>POWER SUPPLY<br>VOLTAGE | VDD –VSS            |                   | 2.8     | 3.3  | 3.8     | V    |      |
| INPUT VOLTAGE                            | Vih                 |                   | 0.7Vdd  |      | VDD     | V    |      |
| INPUT VOLTAGE                            | VIL                 |                   | GND     |      | 0.3 VDD | V    |      |
| OUTPUT VOLTAGE                           | Vон                 |                   | 0.7 Vdd |      | Vdd     | V    |      |
| OUTPUT VOLTAGE                           | Vol                 |                   | GND     |      | 0.3Vdd  | V    |      |
| LOGIC CIRCUIT<br>POWER SUPPLY<br>CURRENT | Idd                 | VDD –VSS<br>=3.3V |         | 250  |         | uA   |      |
| RECOMMENDED<br>LCD DRIVING<br>VOLTAGE    | *VLCD<br>Φ=0<br>θ=0 | Ta=25 °C          |         | 10.0 |         | V    |      |

\*Note: VLCD is produced by module's inside circuit, do not need the external input. The customer

only need to offer +3.3V voltage which is stated in the interface definition.

## 3.2 LED BACKLIGHT SPECIFICATION

| ITEM            | SYMBOL     | MIN. | TYP. | MAX. | UNIT | CONDITIONS        |  |  |
|-----------------|------------|------|------|------|------|-------------------|--|--|
| FORWARD VOLTAGE | Vf         | 2.9  | 3.1  | 3.3  | V    | If $45 \text{ m}$ |  |  |
| COLOR           | OLOR WHITE |      |      |      |      |                   |  |  |

www.china-lcdmodules.com

# 4.TIMING CHARACTERISTICS

Parallel bus timing characteristics(for 6800 MCU):



| Symbol                                  | Signal            | Desci                                   | ription    | Condition              | Min.    | Max.          | Units |
|-----------------------------------------|-------------------|-----------------------------------------|------------|------------------------|---------|---------------|-------|
| t <sub>AS68</sub>                       | CD                | Address                                 | setup time |                        | 0       | 1993          | nS    |
| t <sub>AH68</sub>                       | CD                | Address                                 | hold time  |                        | 0       | 5 <u>55</u> 5 | 115   |
| t <sub>CSSA68</sub>                     | CS1/CS0           | Chin select                             | setup time |                        | 5       |               | nS    |
| tcsH68                                  | 031/030           | Chip select                             | hold time  |                        | 5       | _             | 115   |
| towns                                   |                   | System                                  | read       |                        | 120     |               | nS    |
| CY68                                    |                   | cycle time                              | write      |                        | 80      | _             | 115   |
| t <sub>PWR68</sub>                      | W/R1              | Pulse width                             | read       |                        | 60      |               | nS    |
| t <sub>PWW68</sub>                      | VVIXI             | r uise width                            | write      |                        | 40      |               | 110   |
| turnuca                                 |                   | High pulse                              | read       |                        | 60      |               | nS    |
| LHPW68                                  |                   | width                                   | write      |                        | 40      | 1993          | 110   |
| t <sub>DS68</sub>                       |                   | Data                                    | setup time |                        | 30      | 222           | nS    |
| t <sub>DH68</sub>                       | t <sub>DH68</sub> | hold time                               |            | 0                      | _       | 115           |       |
| t <sub>ACC68</sub><br>t <sub>OD68</sub> |                   | Read access time<br>Output disable time |            | C <sub>L</sub> = 100pF | -<br>50 | 60<br>-       | nS    |

#### REV . B

## 5. COMMANDS

### Command Table

The following is a list of host commands supported by UC1701x

C/D : 0: Control 1: Data

W/R: 0: Write cycle 1: Read cycle

# Useful data bits - Don't care

|    | Command                   | C/D | W/R | D7 | D6 | D5 | D4  | D3 | D2 | D1 | D0 | Action          | Default  |  |
|----|---------------------------|-----|-----|----|----|----|-----|----|----|----|----|-----------------|----------|--|
| 1  | Write Data Byte           | 1   | 0   | #  | #  | #  | #   | #  | #  | #  | #  | Write 1 byte    | N/A      |  |
| 2  | Read Data Byte            | 1   | 1   | #  | #  | #  | #   | #  | #  | #  | #  | Read 1 byte     | N/A      |  |
| 3  | Get Status                | 0   | 1   | BZ | MX | DE | RST | 0  | 0  | 0  | 0  | Get status      |          |  |
| 4  | Set Column Addess LSB     | 0   | 0   | 0  | 0  | 0  | 0   | #  | #  | #  | #  | Set CA[3:0]     | 0        |  |
| 4  | Set Column Addess MSB     | 0   | 0   | 0  | 0  | 0  | 1   | #  | #  | #  | #  | Set CA[7:4]     | 0        |  |
| 5  | Set Power Control         | 0   | 0   | 0  | 0  | 1  | 0   | 1  | #  | #  | #  | Set PC[2:0]     | 000b     |  |
| 6  | Set Scroll Line           | 0   | 0   | 0  | 1  | #  | #   | #  | #  | #  | #  | Set SL[5:0]     | 0        |  |
| 7  | Set Page Address          | 0   | 0   | 1  | 0  | 1  | 1   | #  | #  | #  | #  | Set PA[3:0]     | 0        |  |
| 8  | Set VLCD Resistor Ratio   | 0   | 0   | 0  | 0  | 1  | 0   | 0  | #  | #  | #  | Set PC[5:3]     | 100b     |  |
| 0  | Set Electronic Volume     | 0   | 0   | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 1  | Sat DM[5:0]     | 2011     |  |
| 9  | (double-byte command)     | 0   | 0   | 0  | 0  | #  | #   | #  | #  | #  | #  | Set PM[5.0]     | 2011     |  |
| 10 | Set All-Pixel-ON          | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 1  | 0  | #  | Set DC[1]       | 0b       |  |
| 11 | Set Inverse Display       | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 1  | 1  | #  | Set DC[0]       | 0b       |  |
| 12 | Set Display Enable        | 0   | 0   | 1  | 0  | 1  | 0   | 1  | 1  | 1  | #  | Set DC[2]       | 0b       |  |
| 13 | Set SEG Direction         | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 0  | 0  | #  | Set LC[0]       | 0b       |  |
| 14 | Set COM Direction         | 0   | 0   | 1  | 1  | 0  | 0   | #  | -  | -  | -  | Set LC[1]       | 0b       |  |
| 15 | System reset              | 0   | 0   | 1  | 1  | 1  | 0   | 0  | 0  | 1  | 0  | System Reset    | N/A      |  |
| 16 | NOP                       | 0   | 0   | 1  | 1  | 1  | 0   | 0  | 0  | 1  | 1  | No operation    | N/A      |  |
| 17 | Set LCD Bias Ratio        | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 0  | 1  | #  | Set BR          | 0b       |  |
| 18 | Set Cursor Update Mode    | 0   | 0   | 1  | 1  | 1  | 0   | 0  | 0  | 0  | 0  | AC3=1,          | N/A      |  |
|    | -                         |     |     |    |    |    |     |    |    |    |    | CR=CA           |          |  |
| 19 | Reset Cursor Update Mode  | 0   | 0   | 1  | 1  | 1  | 0   | 1  | 1  | 1  | 0  | AC3=0,<br>CA=CR | N/A      |  |
|    |                           |     |     |    |    |    |     |    |    |    |    | Display OFF     |          |  |
| 23 | Set power save            | 0   | 0   | #  | #  | #  | #   | #  | #  | #  | #  | & All Pixel     | N/A      |  |
|    | Set power save            | Ũ   | Ű   | π  | π  |    |     | 11 |    |    |    | ON              | 1 1/ 2 1 |  |
|    | Set Adv.program control 0 |     |     | 1  | 1  | 1  | 1   | 1  | 0  | 1  | 0  | SetTC,          |          |  |
| 25 | (double-byte command)     | 0   | 0   | #  | 0  | 0  | 1   | 0  | 0  | #  | #  | WA[1:0]         | 90H      |  |

#### COMMAND DESCRIPTION

#### 1. Write Data Byte to Memory

| Action     | C/D | W/R | D7 D6 | D5 D4       | D3      | D2 D1 | D0 |
|------------|-----|-----|-------|-------------|---------|-------|----|
| Write data | 1   | 0   | 8-    | -bit data v | rite to | SRAM  |    |

#### 2. Read Data Byte from Memory

| Action    | C/D | W/R | D7 D6 | D5       | D4  | D3     | D2    | D1 | D0 |
|-----------|-----|-----|-------|----------|-----|--------|-------|----|----|
| Read data | 1   | 1   | 8-k   | oit data | rea | d fron | n SRA | ١M |    |

Write/Read Data Byte (Command 1,2) access Display Data RAM based on Page Address (PA) register and Column Address (CA) register. PA and CA can also be programmed directly by issuing Set Page Address and Set Column Address commands.

#### 3. Get Status

| Action     | C/D | W/R | D7 | D6 | D5 | D4  | D3 | D2 | D1 | D0 |
|------------|-----|-----|----|----|----|-----|----|----|----|----|
| Get Status | 0   | 1   | ΒZ | MX | DE | RST | 0  | 0  | 0  | 0  |

BZ: BZ=1 when busy. The system accepts commands only when BZ=0.

MX: Mirror X. Status of register LC[0]

DE: Display Enable flag. DE=1 when display is enabled.

RST: RST flag. RST=1 when reset is in progress.

#### 4. Set Column Address

| Action                          | C/D | W/R | D7 | D6 | D5 | D4 | D3  | D2  | D1  | D0  |
|---------------------------------|-----|-----|----|----|----|----|-----|-----|-----|-----|
| Set Column Address LSB, CA[3:0] | 0   | 0   | 0  | 0  | 0  | 0  | CA3 | CA2 | CA1 | CA0 |
| Set Column Address MSB, CA[7:4] | 0   | 0   | 0  | 0  | 0  | 1  | CA7 | CA6 | CA5 | CA4 |

Set the SRAM column address before Write/Read memory from host interface.

CA value range: 0~131

#### 5. Set Power Control

| Action                     | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2  | D1  | D0  |
|----------------------------|-----|-----|----|----|----|----|----|-----|-----|-----|
| Set Power Control, PC[2:0] | 0   | 0   | 0  | 0  | 1  | 0  | 1  | PC2 | PC1 | PC0 |

Set PC[2:0] to enable the built-in charge pump.

- PC[2] : 0 Boost OFF PC[1] : 0 – Voltage Regular OFF
- 1 Boost ON
- 1 Voltage Regular ON
- PC[0]: 0 Voltage Follower OFF
- 1 Voltage Follower ON

#### 6. Set Scroll Line

| Action                   | C/D | W/R | D7 | D6 | D5  | D4  | D3  | D2  | D1  | D0  |
|--------------------------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|
| Set Scroll Line, SL[5:0] | 0   | 0   | 0  | 1  | SL5 | SL4 | SL3 | SL2 | SL1 | SL0 |

Set the scroll line number. Range : 0~63

Scroll line setting will scroll the displayed image up by SL rows. Icon output CIC will not be affected by Set Scroll Line command.



#### 7. Set Page Address

| Action                    | C/D | W/R | D7 | D6 | D5 | D4 | D3  | D2  | D1  | D0  |
|---------------------------|-----|-----|----|----|----|----|-----|-----|-----|-----|
| Set Page Address, PA[3:0] | 0   | 0   | 1  | 0  | 1  | 1  | PA3 | PA2 | PA1 | PA0 |

Set the SRAM page address before write/read memory from host interface. Each page of SRAM corresponds to 8 COM lines on LCD panel, except for the last page. The last page corresponds to the icon output CIC.

Possible value = 0~8.

#### 8. Set V<sub>LCD</sub> Resistor Ratio

| Action                                       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2  | D1  | D0  |
|----------------------------------------------|-----|-----|----|----|----|----|----|-----|-----|-----|
| Set V <sub>LCD</sub> Resistor Ratio, PC[5:3] | 0   | 0   | 0  | 0  | 1  | 0  | 0  | PC5 | PC4 | PC3 |

Configure PC[5:3] to set internal Resistor Ratio, Rb/Ra, for the V<sub>LCD</sub> Voltage regulator to adjust the contrast of the display panel:

PC[5:3]: 000b~111b - 1+Rb/Ra ratio. Default: 100b. Refer to VLCD Quick Reference for "1+Rb/Ra" ratio.

V<sub>LCD</sub>=((1+Rb/Ra) x Vev) x (1+(T-25)xC<sub>T</sub>%)

Vev=(1-(63-PM)/162)xV<sub>REF</sub>

where Rb and Ra are internal resistors,

V<sub>REF</sub> is on-chip contrast voltage, and PM is a vaule of electronic volume

#### 9. Set Electronic Volume

| Action                          | C/D | W/R | D7 | D6 | D5  | D4  | D3  | D2  | D1  | D0  |
|---------------------------------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|
| Set Electronic Volume, DM(5:0)  | 0   | 0   | 1  | 0  | 0   | 0   | 0   | 0   | 0   | 1   |
| Set Electionic Volume, Piw[5.0] | 0   | U   | 0  | 0  | PM5 | PM4 | PM3 | PM2 | PM1 | PM0 |

Set PM[5:0] for electronic volume "PM" for VLCD voltage regulator to adjust contrast of LCD panel display Effective range : 0~63. Default : 32

#### 10. Set All Pixel ON

| Action                   | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|--------------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Set All Pixel ON, DC [1] | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 1  | 0  | DC1 |

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM. Default : 0

#### 11. Set Inverse Display

| Action                      | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|-----------------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Set Inverse Display, DC [0] | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 1  | 1  | DC0 |

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

#### 12. Set Display Enable

| Action                    | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|---------------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Set Display Enable, DC[2] | 0   | 0   | 1  | 0  | 1  | 0  | 1  | 1  | 1  | DC2 |

This command is for programming register DC[2]. When DC[2] is set to 1, UC1701x will first exit from sleep mode, restore the power and then turn on COM drivers and SEG drivers.

#### 13. Set SEG Direction

| Action                       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Segment Direction, LC[0] | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | MX |
|                              |     |     | -  |    |    |    |    |    |    |    |

Set LC[0] for SEG (column) mirror (MX). Default: 0

MX is implemented by reversing the mapping order between RAM and SEG (column) electrodes. The data stored in RAM is not affected by MX command. Yet, MX has immediate effect on the display image.

#### 14. Set COM Direction

| Action                      | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Common Direction, LC[1] | 0   | 0   | 1  | 1  | 0  | 0  | MY | -  | -  | -  |

Set LC[1] for COM (row) mirror (MY).

MY is implemented by reversing the mapping between RAM and COM (row) electrodes. The data stored in RAM is not affected by MY command. Yet, MY has immediate effect on the display image.

#### 15. System Reset

| Action       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------|-----|-----|----|----|----|----|----|----|----|----|
| System Reset | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |

This command will activate the system reset.

Control register values will be reset to their default values. Data store in RAM will not be affected.

#### 16. NOP

| Action       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------|-----|-----|----|----|----|----|----|----|----|----|
| No Operation | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |

This command is used for "no operation".

#### 17. Set LCD Bias Ratio

| Action             | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Bias Ratio, BR | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 1  | BR |

Select voltage bias ratio required for LCD. Default: 0

The setting of Bias ratio varies according to Duty:

| DUTY | BR = 0 | BR = 1 |
|------|--------|--------|
| 1/65 | 1/9    | 1/7    |
| 1/49 | 1/8    | 1/6    |
| 1/33 | 1/6    | 1/5    |
| 1/55 | 1/8    | 1/6    |

#### 18. Set Cursor Update Mode

| Action                 | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Cursor Update Mode | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |

This command is used for set cursor update mode function. When cursor update mode sets, UC1701x will update register CR with the value of register CA. The column address CA will increment with write RAM data operation but the address wraps around will be suspended no matter what WA setting is. However, the column address will not increment in read RAM data operation. The set cursor update mode can be used to implement "write after read RAM" function. The column address (CA) will be restored to the value, which is before the set cursor update mode command, when reset cursor update mode.

The purpose of this pair commands and their feature is to support "write after read" function for cursor implementation.

#### 19. Reset Cursor Update Mode

| Action                   | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Reset Cursor Update Mode | 0   | 0   | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |

Set AC3=0 and CA=CR.

#### 23. Set Power Save

| Action                           | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----------------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Power Save<br>(Compound Command) | 0   | 0   | #  | #  | #  | #  | #  | #  | #  | #  |

#### 25. Set Advanced Program Control 0

| Action                               | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1  | D0  |
|--------------------------------------|-----|-----|----|----|----|----|----|----|-----|-----|
| Set Adv. Program Control, APC0 [7:0] | 0   | 0   | 1  | 1  | 1  | 1  | 1  | 0  | 1   | 0   |
| (Double-byte command)                | 0   | U   | TC | 0  | 0  | 1  | 0  | 0  | WA1 | WAO |

TC : APC0 [7], V<sub>BIAS</sub> temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition: TC : 0b = -0.05%/°C, 1

1b = -0.11%/°C

WA : APC0 [1:0], Automatic column/row wrap around.

| WA[0] : 0: PA WA disable | 1: PA WA enable. |
|--------------------------|------------------|
| WA[1] : 0: CA WA disable | 1: CA WA enable. |

# 6. QUALITY SPECIFICATIONS

# 6.1 ACCEPTABLE QUALITY LEVEL

| Inspection items      | Sampling procedures      | AQL  |
|-----------------------|--------------------------|------|
|                       | GB2828-81                |      |
| Visual-operating      | Inspection level II      | 0.65 |
| (Electro-optical)     | Normal inspection        | 0.05 |
|                       | Single sample inspection |      |
|                       | GB2828-81                |      |
| Visual not operating  | Inspection level II      | 1.5  |
| visual-not operating  | Normal inspection        | 1.5  |
|                       | Single sample inspection |      |
|                       | GB2828-81                |      |
| Dimension macquant    | Inspection level II      | 1.5  |
| Dimension measurement | Normal inspection        | 1.5  |
|                       | Single sample inspection |      |

# 6.2 INSPECTION CONDITIONS (THE ENVIRONMENTAL)

-Room temperature:  $25\pm3$  °C -Humidity:  $65\pm20\%$ RH

## 6.3 INSPECTION STANDARDS

# 6.3.1 VISUAL WHILE OPERATING

| Items to be inspected | Inspection standard                                                                                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . No display          | . If any pattern is not active at all, they can be rejected.                                                                                                                                               |
| . Irregular operating | <ul> <li>No irregular operating are allowed</li> <li>Appeared different display, which they should be chosen in the pattern, or<br/>appeared in different position where they should be chosen.</li> </ul> |
| .Irregular display    | . Any segment doesn't active, they can be rejected.                                                                                                                                                        |
| . Over current        | . The total current required to activate the module should not be exceed the MAX current in specification.                                                                                                 |
| .View angles          | . Valves that don't meet the minimum value noted in the specification. they can be rejected.                                                                                                               |
| .Contrast             | . Valves that don't meet the minimum value noted in the specification, they can be reject.                                                                                                                 |
| .LCD operate voltage  | . Meet the specification.                                                                                                                                                                                  |

# 6.3.2Visual while not operating

| Module dimension  | . Meet the module outline drawing, not exceed the tolerance.                                                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCD panel scratch | .Following scratches inside the effective viewing area considered as the defects when their width & length are larger than the following combinations.<br>Number: one or more Width: 0.15 length: 5.0<br>two or more Width: 0.10 length: 3.0<br>three or more Width: 0.05 length: 2.0<br>When the defects exceed this, it can be rejected. |

## 7.RELIABILITY

| Test Item         | Content of Test                                                                     | Test Condition       |  |
|-------------------|-------------------------------------------------------------------------------------|----------------------|--|
| High temperature  | Endurance test applying the high storage temperature for a                          | 60℃                  |  |
| storage           | long time                                                                           | 120hrs               |  |
| Low temperature   | Endurance test applying the low storage temperature for a                           | -10°C                |  |
| storage           | long time                                                                           | 120hrs               |  |
| High temperature  | Endurance test applying the electic stress (Voltage and                             | 50℃                  |  |
| operation         | Current) and the thermal stress to the element for a long time                      | 120hrs               |  |
| Low temperature   | Endurance test applying the electic stress under low                                | 0°C                  |  |
| operation         | temperature for a long time                                                         | 120hrs               |  |
| High temperature  | Endurance test applying the high temperature and high                               | 60℃,90%RH            |  |
| /Humidity storage | humidity storage for a long time                                                    | 120hrs               |  |
| Temperature cycle | Endurance test applying the low and high                                            |                      |  |
|                   | Temperature cycle                                                                   |                      |  |
|                   | $-10^{\circ}\text{C} \rightarrow 25^{\circ}\text{C} \rightarrow 60^{\circ}\text{C}$ | <b>-</b> 10℃/60℃     |  |
|                   | 30min←5min←30min                                                                    | 10 cycle             |  |
|                   |                                                                                     |                      |  |
|                   | 1 cycle                                                                             |                      |  |
| Vibration test    |                                                                                     | 10~55Hz              |  |
|                   | Endurance test annihing the vibration during transportation                         | 1.5mmp-p             |  |
|                   | and using                                                                           | One cycle 60 seconds |  |
|                   | and using                                                                           | to 3 directions of   |  |
|                   |                                                                                     | X,Y,Z                |  |

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 4 hour storage in normal

REV . B

## **8.TEST REPORT**

(VDD=3.3V,Ta=25°C)

| Item                       | Condition          | Standard                  | Note      |
|----------------------------|--------------------|---------------------------|-----------|
| High temp. storage         | 80°C,120 hrs       | Appearance without defect |           |
| Low temp. storage          | −30°C,120 hrs      | Appearance without defect |           |
| High temp. operation       | 70°C,120 hrs       | Appearance without defect |           |
| Low temp. operation        | −20°C,120 hrs      | Appearance without defect |           |
| High temp. & humi. Storage | 60℃,90% RH,120 hrs | Appearance without defect |           |
|                            | -10°C,30min→+25°C, |                           | 10 1      |
| Thermal shock              | 5min→+60°C,30min   | Appearance without defect | 10 cycles |

# 9. PRECAUTIONS FOR USING LCD MODULES

### 9.1 Precaution

To our module ,we have made accurately assembly and debugging .So customer should do as follows:

- (1) Modules use LCD elements, so we must be treated as such avoid intense shock  $\checkmark$  impact  $\checkmark$  extrusion and falls from a height.
- (2) Avoid to twist and disassemble module's buckle legs.
- (3) Avoid to operate modules on the table if it's surface have printed circuit
- (4) Avoid to touch , adjust and modify the rubber that connects LCD and PCB.
- (5) Liquid crystal is harmful Substances .When liquid crystal leaked out and contacted to your hand, body or clothes ,you must wash it immediately with soap.

### 9.2 Caution Of Mounting

The panel of the LCD module consists of two thin glass plates with polarizes which easily get damaged since the module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD modules.

### 9.3 Caution Of LCD Handling & Cleaning

When cleaning the display surface. Use soft cloth with solvent (recommended below) and wipe lightly.

-Isopropyl alcohol

-Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizes surface. Do not use the following solvent:

- -Water
- -Ketone
- Aromatics

### 9.4 Caution Against Static Charge

The LCD modules use COMS LSI drivers. So we recommend that you connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on and ground your body. work/assembly table. And assembly equipment to protect against static electricity. the following ways are recommended.

- (1) If you doesn't intend to mount, please don't take module from bag. The module's packaging bag is handled by antistatic technology.
- (2) If you intend to operate module that you must make sure your body is good grounding, keeping your body and module at the same level.
- (3) The operating equipment requires to good grounding, especially the driver .In order to avoid interference we must make sure good grounding and no leakage.
- (4) Each module have a protective film .It is used to avoid the polaroid LCD is scratched or polluted .Please peel off the Protective Film slowly ,or else will produce static .
- (5) The humidity range at workshop:  $50 \sim 60\%$  RH

### 9.5 Current Protection Devices

Module was not equipped with current protection devices, so we must prepared the current protection devices for using.

### 9.6 Caution For Operation

-It is indispensable to drive LCM within the specified voltage limit since the higher voltage than the limit shortens LCM life.

-Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD show dark color in them.

However those phenomena do not mean malfunction or out of order with LCD, which will come back in the specified operating temperature range.

- -If the display area is pushed hard during operation. Some font will be abnormally displayed but it resumes normal condition after turning off once.
- -A slight dew depositing on terminals is a cause for Electro-chemical reaction resulting in terminal open circuit.

Under the maximum operating temperature, 50%RH or less is required

### 9.7 Caution For Soldering

If need soldering, we must notice as follows:

- \* Except the connect position of INPUT and OUTPUT doesn't allow to soldering.
- X Soldering iron required to be insulated.
- (1) Soldering Conditions:

Iron Temperature :  $280^{\circ}C \pm 10^{\circ}C$ 

Soldering Time: < 3-4S

Soldering Materials: Low melting point, can be fully molten solder

(2) Caution for repeat soldering:

Because connect line is through module's pad connected to module. Removing the line we

must wait until the solder is completely melted . If solder doesn't completely melted , it is easily lead to the pad damage or loss.Using "XI QIANG" is the best way to remove the connect line .Besides, we must notice that repeat soldering doesn't allow more than three time.

### 9.8 Packaging And Storage

When module needs to store a long time ,we should do as follows. If storage method is improper, it will have an effect on the Polaroid ,causing display not good. Meanwhile pads are easily oxidized lead to soldering didn't easily .

- (1) As far as possible to use the original packaging bag.
- (2) If we intend to store bulk modules ,we should put them in anti-static bag and sealing .
- (3) To prevent modules from degradation, do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (4) The reasonable storage method is low humidity, temperature in  $0^{\circ}$ C to  $35^{\circ}$ C
- (5) Storing with no touch on polarizes surface by the anythingelse.

# **10.PRECAUTIONS FOR CUSTOMER**

- (1) A limit sample should be provided by the both parties on an occasion when the both parties agree its necessity.Judgement by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.
- (2) On the following occasions, the handling of problem should be decided through discussion and agreement between representative of the both parties.

-When a question is arisen in this specification.

- -When a new problem is arisen which is not specified in this specifications.
- -When an inspection specification change or operating condition change in customer is reported to TSINGTEK, and some problem is arisen in this specification due to the change.
- -When a new problem is arisen at the customer's operating set for sample evaluation in the customer size.